Concept

Gromov's theorem on groups of polynomial growth

In geometric group theory, Gromov's theorem on groups of polynomial growth, first proved by Mikhail Gromov, characterizes finitely generated groups of polynomial growth, as those groups which have nilpotent subgroups of finite index. The growth rate of a group is a well-defined notion from asymptotic analysis. To say that a finitely generated group has polynomial growth means the number of elements of length (relative to a symmetric generating set) at most n is bounded above by a polynomial function p(n). The order of growth is then the least degree of any such polynomial function p. A nilpotent group G is a group with a lower central series terminating in the identity subgroup. Gromov's theorem states that a finitely generated group has polynomial growth if and only if it has a nilpotent subgroup that is of finite index. There is a vast literature on growth rates, leading up to Gromov's theorem. An earlier result of Joseph A. Wolf showed that if G is a finitely generated nilpotent group, then the group has polynomial growth. Yves Guivarc'h and independently Hyman Bass (with different proofs) computed the exact order of polynomial growth. Let G be a finitely generated nilpotent group with lower central series In particular, the quotient group Gk/Gk+1 is a finitely generated abelian group. The Bass–Guivarc'h formula states that the order of polynomial growth of G is where: rank denotes the rank of an abelian group, i.e. the largest number of independent and torsion-free elements of the abelian group. In particular, Gromov's theorem and the Bass–Guivarc'h formula imply that the order of polynomial growth of a finitely generated group is always either an integer or infinity (excluding for example, fractional powers). Another nice application of Gromov's theorem and the Bass–Guivarch formula is to the quasi-isometric rigidity of finitely generated abelian groups: any group which is quasi-isometric to a finitely generated abelian group contains a free abelian group of finite index.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.