**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Concept# Geometric group theory

Summary

Geometric group theory is an area in mathematics devoted to the study of finitely generated groups via exploring the connections between algebraic properties of such groups and topological and geometric properties of spaces on which these groups act (that is, when the groups in question are realized as geometric symmetries or continuous transformations of some spaces).
Another important idea in geometric group theory is to consider finitely generated groups themselves as geometric objects. This is usually done by studying the Cayley graphs of groups, which, in addition to the graph structure, are endowed with the structure of a metric space, given by the so-called word metric.
Geometric group theory, as a distinct area, is relatively new, and became a clearly identifiable branch of mathematics in the late 1980s and early 1990s. Geometric group theory closely interacts with low-dimensional topology, hyperbolic geometry, algebraic topology, computational group theory and differential

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications

Loading

Related people

Loading

Related units

Loading

Related concepts

Loading

Related courses

Loading

Related lectures

Loading

Related people

No results

Related publications (2)

Related units

No results

Loading

Loading

Related concepts (28)

Hyperbolic group

In group theory, more precisely in geometric group theory, a hyperbolic group, also known as a word hyperbolic group or Gromov hyperbolic group, is a finitely generated group equipped with a word met

Group theory

In abstract algebra, group theory studies the algebraic structures known as groups.

The concept of a group is central to abstract algebra: other well-known algebraic structures, such as rings, fi

The concept of a group is central to abstract algebra: other well-known algebraic structures, such as rings, fi

Metric space

In mathematics, a metric space is a set together with a notion of distance between its elements, usually called points. The distance is measured by a function called a metric or distance function.

Related courses (7)

MATH-211: Group Theory

Après une introduction à la théorie des catégories, nous appliquerons la théorie générale au cas particulier des groupes, ce qui nous permettra de bien mettre en perspective des notions telles que quotients de groupe et actions de groupe.

MATH-735: Topics in geometric group theory

The goal of this course/seminar is to introduce the students to some contemporary aspects of geometric group theory. Emphasis will be put on Artin's Braid groups and Thompson's groups.

CH-250: Mathematical methods in chemistry

This course consists of two parts. The first part covers basic concepts of molecular symmetry and the application of group theory to describe it. The second part introduces Laplace transforms and Fourier series and their use for solving ordinary and partial differential equations in chemistry & c.e.

Related lectures (1)

The objective of this series is to study metric geometric properties of disjoint unions of Cayley graphs of amenable groups by group properties of the Cayley accumulation points in the space of marked groups. In this Part II, we prove that a disjoint union admits a fibred coarse embedding into a Hilbert space (as a disjoint union) if and only if the Cayley boundary of the sequence in the space of marked groups is uniformly a-T-menable. We furthermore extend this result to ones with other target spaces. By combining our main results with constructions of Osajda and Arzhantseva Osajda, we construct two systems of markings of a certain sequence of finite groups with two opposite extreme behaviors of the resulting two disjoint unions: With respect to one marking, the space has property A. On the other hand, with respect to the other, the space does not admit fibred coarse embeddings into Banach spaces with non-trivial type (for instance, uniformly convex Banach spaces) or Hadamard manifolds; the Cayley limit group is, furthermore, non-exact.

2019A weak metric on a set is a function that satisfies the axioms of a metric except the symmetry and the separation axioms. The aim of this paper is to present some interesting weak metrics and to study some of their properties. In particular, we introduce a weak metric, called the Apollonian weak metric, on any subset of a Euclidean space which is either bounded or whose boundary is unbounded. We relate this weak metric to some familiar metrics such as the Poincaré metric, the Klein-Hilbert metric, the Funk metric and the part metric which all play important roles in classical and in recent work on geometric function theory.

2007