Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Braided rivers are highly dynamical systems characterized by varying network-like structures even under quasi-steady conditions. Understanding their dynamics is crucial in geomorphology and river engineering (e.g., river restoration in Alpine and piedmond ...
We develop random graph models where graphs are generated by connecting not only pairs of vertices by edges, but also larger subsets of vertices by copies of small atomic subgraphs of arbitrary topology. This allows for the generation of graphs with extens ...
Suppose that the vertices of a graph G are colored with two colors in an unknown way. The color that occurs on more than half of the vertices is called the majority color (if it exists), and any vertex of this color is called a majority vertex. We study th ...
This article introduces a new class of models for multiple networks. The core idea is to parameterize a distribution on labeled graphs in terms of a Frechet mean graph (which depends on a user-specified choice of metric or graph distance) and a parameter t ...
We extend the quasiparticle self-consistent approach beyond the GW approximation by using a range separated vertex function. The developed approach yields band gaps, dielectric constants, and band positions with an accuracy similar to highest-level electro ...
Given a source of iid samples of edges of an input graph G with n vertices and m edges, how many samples does one need to compute a constant factor approximation to the maximum matching size in G? Moreover, is it possible to obtain such an estimate in a sm ...
The metric dimension of a graph G is the minimal size of a subset R of vertices of G that, upon reporting their graph distance from a distinguished (source) vertex v⋆, enable unique identification of the source vertex v⋆ among all possible vertices of G. I ...
Let G be a drawing of a graph with n vertices and e > 4n edges, in which no two adjacent edges cross and any pair of independent edges cross at most once. According to the celebrated Crossing Lemma of Ajtai, Chvatal, Newborn, Szemeredi and Leighton, the nu ...
We study different symbolic algorithms to solve two related reconfiguration problems on graphs: the token swapping problem and the permutation routing via matchings problem. Input to both problems is a connected graph with labeled vertices and a token in e ...
A hallmark of graph neural networks is their ability to distinguish the isomorphism class of their inputs. This study derives hardness results for the classification variant of graph isomorphism in the message-passing model (MPNN). MPNN encompasses the maj ...