The atmosphere of Venus is primarily of supercritical carbon dioxide and is much denser and hotter than that of Earth. The temperature at the surface is 740 K (467 °C, 872 °F), and the pressure is , roughly the pressure found underwater on Earth. The Venusian atmosphere supports opaque clouds of sulfuric acid, making optical Earth-based and orbital observation of the surface impossible. Information about the topography has been obtained exclusively by radar imaging. Aside from carbon dioxide, the other main component is nitrogen. Other chemical compounds are present only in trace amounts.
Aside from the very surface layers, the atmosphere is in a state of vigorous circulation. The upper layer of troposphere exhibits a phenomenon of super-rotation, in which the atmosphere circles the planet in just four Earth days, much faster than the planet's sidereal day of 243 days. The winds supporting super-rotation blow at a speed of 100 m/s (≈360 km/h or 220 mph) or more. Winds move at up to 60 times the speed of the planet's rotation, while Earth's fastest winds are only 10% to 20% rotation speed. On the other hand, the wind speed becomes increasingly slower as the elevation from the surface decreases, with the breeze barely reaching the speed of 2.8 m/s (≈10 km/h or 6.2 mph) on the surface. Near the poles are anticyclonic structures called polar vortices. Each vortex is double-eyed and shows a characteristic S-shaped pattern of clouds. Above there is an intermediate layer of mesosphere which separates the troposphere from the thermosphere. The thermosphere is also characterized by strong circulation, but very different in its nature—the gases heated and partially ionized by sunlight in the sunlit hemisphere migrate to the dark hemisphere where they recombine and downwell.
Unlike Earth, Venus lacks a magnetic field. Its ionosphere separates the atmosphere from outer space and the solar wind. This ionized layer excludes the solar magnetic field, giving Venus a distinct magnetic environment. This is considered Venus's induced magnetosphere.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The course equips students with a comprehensive scientific understanding of climate change covering a wide range of topics from physical principles, historical climate change, greenhouse gas emissions
This course provides students with an overview over the basics of environmental chemistry. This includes the chemistry of natural systems, as well as the fate of anthropogenic chemicals in natural sys
Le cours abordera les grandes problématiques technologiques et socio-économiques liées à la transition énergétique, ainsi que les perspectives et barrières à l'établissement d'un système énergétique d
Venera 7 (Венера-7) was a Soviet spacecraft, part of the Venera series of probes to Venus. When it landed on the Venusian surface on 15 December 1970, it became the first spacecraft to soft land on another planet and the first to transmit data from there back to Earth. The lander was designed to be able to survive pressure of up to and temperatures of . This was significantly greater than what was expected to be encountered but significant uncertainties as to the surface temperatures and pressure of Venus resulted in the designers’ opting for a large margin of error.
Venera 4 (Венера-4), also designated 4V-1 No.310, was a probe in the Soviet Venera program for the exploration of Venus. The probe comprised a lander, designed to enter the Venusian atmosphere and parachute to the surface, and a carrier/flyby spacecraft, which carried the lander to Venus and served as a communications relay for it. In 1967, it was the first successful probe to perform in-place analysis of the environment of another planet.
Akatsuki, also known as the Venus Climate Orbiter (VCO) and Planet-C, is a Japan Aerospace Exploration Agency (JAXA) space probe tasked with studying the atmosphere of Venus. It was launched aboard an H-IIA 202 rocket on 20 May 2010, but failed to enter orbit around Venus on 6 December 2010. After the craft orbited the Sun for five years, engineers successfully placed it into an alternative Venusian elliptic orbit on 7 December 2015 by firing its attitude control thrusters for 20 minutes and made it the first Japanese satellite orbiting Venus.
Explores the impact of air pollution on agriculture, cities, and industries, discussing sources, historical episodes, current problems, regulations, and global trends.
Delves into the carbon cycle, CO2 storage, volcanic emissions, human impact, and nature-inspired solutions for reducing emissions.
Covers hydrostatic equilibrium, pressure profile, mean molecular mass, and atmosphere retention conditions in astrophysics.
Learn the concepts used in the design of space missions, manned or unmanned, and operations, based on the professional experience of the lecturer.
Learn the concepts used in the design of space missions, manned or unmanned, and operations, based on the professional experience of the lecturer.
Learn about how the quality of water is a direct result of complex bio-geo-chemical interactions, and about how to use these processes to mitigate water quality issues.
X-Ray observation of Venus using JEMX instrument on INTEGRAL telescope in the 18.04.22 to 24.04.22 window. Abstract: On April 22 and 24, 2022, Venus was observed with the JEM-X detector of the INTEGRAL space telescope. The observation performed yielded a d ...
Isoprene is a key trace component of the atmosphere emitted by vegetation and other organisms. It is highly reactive and can impact atmospheric composition and climate by affecting the greenhouse gases ozone and methane and secondary organic aerosol format ...
2024
This is chapter 1 of the State of Environmental Science in Svalbard (SESS) report 2022. We have used temperature measurements from a number of observatories in and above Svalbard to study temperature variations, and their relation to solar activity. Sea te ...