In graph theory, the term bipartite hypergraph describes several related classes of hypergraphs, all of which are natural generalizations of a bipartite graph. Property B The weakest definition of bipartiteness is also called 2-colorability. A hypergraph H = (V, E) is called 2-colorable if its vertex set V can be partitioned into two sets, X and Y, such that each hyperedge meets both X and Y. Equivalently, the vertices of H can be 2-colored so that no hyperedge is monochromatic. Every bipartite graph G = (X+Y, E) is 2-colorable: each edge contains exactly one vertex of X and one vertex of Y, so e.g. X can be colored blue and Y can be colored yellow and no edge is monochromatic. The property of 2-colorability was first introduced by Felix Bernstein in the context of set families; therefore it is also called Property B. A stronger definition of bipartiteness is: a hypergraph is called bipartite if its vertex set V can be partitioned into two sets, X and Y, such that each hyperedge contains exactly one element of X. Every bipartite graph is also a bipartite hypergraph. Every bipartite hypergraph is 2-colorable, but bipartiteness is stronger than 2-colorability. Let H be a hypergraph on the vertices {1, 2, 3, 4} with the following hyperedges:{ {1,2,3} , {1,2,4} , {1,3,4} , {2,3,4} }This H is 2-colorable, for example by the partition X = {1,2} and Y = {3,4}. However, it is not bipartite, since every set X with one element has an empty intersection with one hyperedge, and every set X with two or more elements has an intersection of size 2 or more with at least two hyperedges. Hall's marriage theorem has been generalized from bipartite graphs to bipartite hypergraphs; see Hall-type theorems for hypergraphs. An stronger definition is: given an integer n, a hypergraph is called n-uniform if all its hyperedges contain exactly n vertices. An n-uniform hypergraph is called n-partite if its vertex set V can be partitioned into n subsets such that each hyperedge contains exactly one element from each subset.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (1)
MATH-448: Statistical analysis of network data
A first course in statistical network analysis and applications.
Related lectures (13)
Tactical Configurations: Rödl Nibble
Explores tactical configurations, covering the minimal size of subsets needed to cover element sets and the concept of K-sets and base points.
Set Coverings and Uniformity Theorems
Explores set coverings and uniformity theorems in hypergraphs, revealing insights into their structures.
AI in Chemistry: Hypergraph and Single-Step Ritual Synthesis
Explores AI applications in chemistry, hypergraphs, single-step ritual synthesis, and retro-synthetic models evaluation.
Show more
Related publications (20)
Related concepts (4)
Vertex cover in hypergraphs
In graph theory, a vertex cover in a hypergraph is a set of vertices, such that every hyperedge of the hypergraph contains at least one vertex of that set. It is an extension of the notion of vertex cover in a graph. An equivalent term is a hitting set: given a collection of sets, a set which intersects all sets in the collection in at least one element is called a hitting set. The equivalence can be seen by mapping the sets in the collection onto hyperedges. Another equivalent term, used more in a combinatorial context, is transversal.
Hall-type theorems for hypergraphs
In the mathematical field of graph theory, Hall-type theorems for hypergraphs are several generalizations of Hall's marriage theorem from graphs to hypergraphs. Such theorems were proved by Ofra Kessler, Ron Aharoni, Penny Haxell, Roy Meshulam, and others. Hall's marriage theorem provides a condition guaranteeing that a bipartite graph (X + Y, E) admits a perfect matching, or - more generally - a matching that saturates all vertices of Y. The condition involves the number of neighbors of subsets of Y.
Matching in hypergraphs
In graph theory, a matching in a hypergraph is a set of hyperedges, in which every two hyperedges are disjoint. It is an extension of the notion of matching in a graph. Recall that a hypergraph H is a pair (V, E), where V is a set of vertices and E is a set of subsets of V called hyperedges. Each hyperedge may contain one or more vertices. A matching in H is a subset M of E, such that every two hyperedges e_1 and e_2 in M have an empty intersection (have no vertex in common).
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.