Matching in hypergraphsIn graph theory, a matching in a hypergraph is a set of hyperedges, in which every two hyperedges are disjoint. It is an extension of the notion of matching in a graph. Recall that a hypergraph H is a pair (V, E), where V is a set of vertices and E is a set of subsets of V called hyperedges. Each hyperedge may contain one or more vertices. A matching in H is a subset M of E, such that every two hyperedges e_1 and e_2 in M have an empty intersection (have no vertex in common).
Bipartite hypergraphIn graph theory, the term bipartite hypergraph describes several related classes of hypergraphs, all of which are natural generalizations of a bipartite graph. Property B The weakest definition of bipartiteness is also called 2-colorability. A hypergraph H = (V, E) is called 2-colorable if its vertex set V can be partitioned into two sets, X and Y, such that each hyperedge meets both X and Y. Equivalently, the vertices of H can be 2-colored so that no hyperedge is monochromatic.
Transversal (combinatorics)In mathematics, particularly in combinatorics, given a family of sets, here called a collection C, a transversal (also called a cross-section) is a set containing exactly one element from each member of the collection. When the sets of the collection are mutually disjoint, each element of the transversal corresponds to exactly one member of C (the set it is a member of). If the original sets are not disjoint, there are two possibilities for the definition of a transversal: One variation is that there is a bijection f from the transversal to C such that x is an element of f(x) for each x in the transversal.
HypergraphIn mathematics, a hypergraph is a generalization of a graph in which an edge can join any number of vertices. In contrast, in an ordinary graph, an edge connects exactly two vertices. Formally, a directed hypergraph is a pair , where is a set of elements called nodes, vertices, points, or elements and is a set of pairs of subsets of . Each of these pairs is called an edge or hyperedge; the vertex subset is known as its tail or domain, and as its head or codomain. The order of a hypergraph is the number of vertices in .
Line graphIn the mathematical discipline of graph theory, the line graph of an undirected graph G is another graph L(G) that represents the adjacencies between edges of G. L(G) is constructed in the following way: for each edge in G, make a vertex in L(G); for every two edges in G that have a vertex in common, make an edge between their corresponding vertices in L(G). The name line graph comes from a paper by although both and used the construction before this.
Matching (graph theory)In the mathematical discipline of graph theory, a matching or independent edge set in an undirected graph is a set of edges without common vertices. In other words, a subset of the edges is a matching if each vertex appears in at most one edge of that matching. Finding a matching in a bipartite graph can be treated as a network flow problem. Given a graph G = (V, E), a matching M in G is a set of pairwise non-adjacent edges, none of which are loops; that is, no two edges share common vertices.