Dilation (usually represented by ⊕) is one of the basic operations in mathematical morphology. Originally developed for , it has been expanded first to grayscale images, and then to complete lattices. The dilation operation usually uses a structuring element for probing and expanding the shapes contained in the input image.
In binary morphology, dilation is a shift-invariant (translation invariant) operator, equivalent to Minkowski addition.
A binary image is viewed in mathematical morphology as a subset of a Euclidean space Rd or the integer grid Zd, for some dimension d. Let E be a Euclidean space or an integer grid, A a binary image in E, and B a structuring element regarded as a subset of Rd.
The dilation of A by B is defined by
where Ab is the translation of A by b.
Dilation is commutative, also given by .
If B has a center on the origin, then the dilation of A by B can be understood as the locus of the points covered by B when the center of B moves inside A. The dilation of a square of size 10, centered at the origin, by a disk of radius 2, also centered at the origin, is a square of side 14, with rounded corners, centered at the origin. The radius of the rounded corners is 2.
The dilation can also be obtained by , where Bs denotes the symmetric of B, that is, .
Suppose A is the following 11 x 11 matrix and B is the following 3 x 3 matrix:
0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 1 0 0 1 1 1 0
0 1 1 1 1 0 0 1 1 1 0
0 1 1 1 1 1 1 1 1 1 0
0 1 1 1 1 1 1 1 1 1 0 1 1 1
0 1 1 0 0 0 1 1 1 1 0 1 1 1
0 1 1 0 0 0 1 1 1 1 0 1 1 1
0 1 1 0 0 0 1 1 1 1 0
0 1 1 1 1 1 1 1 0 0 0
0 1 1 1 1 1 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0
For each pixel in A that has a value of 1, superimpose B, with the center of B aligned with the corresponding pixel in A.
Each pixel of every superimposed B is included in the dilation of A by B.
The dilation of A by B is given by this 11 x 11 matrix.
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 0 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 0 0
1 1 1 1 1 1 1 1 1 0 0
Here are some properties of the binary dilation operator
It is translation invariant.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Introduction to the basic techniques of image processing. Introduction to the development of image-processing software and to prototyping using Jupyter notebooks. Application to real-world examples in
In geometry, the Minkowski sum of two sets of position vectors A and B in Euclidean space is formed by adding each vector in A to each vector in B: The Minkowski difference (also Minkowski subtraction, Minkowski decomposition, or geometric difference) is the corresponding inverse, where produces a set that could be summed with B to recover A. This is defined as the complement of the Minkowski sum of the complement of A with the reflection of B about the origin. This definition allows a symmetrical relationship between the Minkowski sum and difference.
Erosion (usually represented by ⊖) is one of two fundamental operations (the other being dilation) in from which all other morphological operations are based. It was originally defined for s, later being extended to grayscale images, and subsequently to complete lattices. The erosion operation usually uses a structuring element for probing and reducing the shapes contained in the input image. In binary morphology, an image is viewed as a subset of a Euclidean space or the integer grid , for some dimension d.
In mathematical morphology, opening is the dilation of the erosion of a set A by a structuring element B: where and denote erosion and dilation, respectively. Together with closing, the opening serves in computer vision and as a basic workhorse of morphological noise removal. Opening removes small objects from the foreground (usually taken as the bright pixels) of an image, placing them in the background, while closing removes small holes in the foreground, changing small islands of background into foreground.
Summarizes image segmentation, morphological filters, and converting pixels to objects.
The proton exchange membrane fuel cell (PEMFC) is an important technology for clean power generation in a decarbonized hydrogen system and is notably envisioned for applications in heavy-duty transportation. However, for cost and performance competitivenes ...
Implantable flexible neural interfaces (IfNIs) are capable of directly modulating signals of the central and peripheral nervous system by stimulating or recording the action potential. Despite outstanding results in acute experiments on animals and humans, ...
MDPI2022
The transition from aquatic to terrestrial environments represents a significant event in the history of evolution. For this transition to occur, animals had to adapt their morphology, physiology and locomotory skills to handle the challenges and interacti ...