Summary
In quantum field theory, asymptotic freedom is a property of some gauge theories that causes interactions between particles to become asymptotically weaker as the energy scale increases and the corresponding length scale decreases. (Alternatively, and perhaps contrarily, in applying an S-matrix, asymptotically free refers to free particles states in the distant past or the distant future.) Asymptotic freedom is a feature of quantum chromodynamics (QCD), the quantum field theory of the strong interaction between quarks and gluons, the fundamental constituents of nuclear matter. Quarks interact weakly at high energies, allowing perturbative calculations. At low energies, the interaction becomes strong, leading to the confinement of quarks and gluons within composite hadrons. The asymptotic freedom of QCD was discovered in 1973 by David Gross and Frank Wilczek, and independently by David Politzer in the same year. For this work all three shared the 2004 Nobel Prize in Physics. Asymptotic freedom in QCD was discovered in 1973 by David Gross and Frank Wilczek, and independently by David Politzer in the same year. The same phenomenon had previously been observed (in quantum electrodynamics with a charged vector field, by V.S. Vanyashin and M.V. Terent'ev in 1965; and Yang–Mills theory by Iosif Khriplovich in 1969 and Gerard 't Hooft in 1972), but its physical significance was not realized until the work of Gross, Wilczek and Politzer, which was recognized by the 2004 Nobel Prize in Physics. The discovery was instrumental in "rehabilitating" quantum field theory. Prior to 1973, many theorists suspected that field theory was fundamentally inconsistent because the interactions become infinitely strong at short distances. This phenomenon is usually called a Landau pole, and it defines the smallest length scale that a theory can describe. This problem was discovered in field theories of interacting scalars and spinors, including quantum electrodynamics (QED), and Lehmann positivity led many to suspect that it is unavoidable.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (4)
PHYS-432: Quantum field theory II
The goal of the course is to introduce relativistic quantum field theory as the conceptual and mathematical framework describing fundamental interactions such as Quantum Electrodynamics.
PHYS-702: Advanced Quantum Field Theory
The course builds on the course QFT1 and QFT2 and develops in parallel to the course on Gauge Theories and the SM.
PHYS-739: Conformal Field theory and Gravity
This course is an introduction to the non-perturbative bootstrap approach to Conformal Field Theory and to the Gauge/Gravity duality, emphasizing the fruitful interplay between these two ideas.
Show more