In physics, a coupling constant or gauge coupling parameter (or, more simply, a coupling), is a number that determines the strength of the force exerted in an interaction. Originally, the coupling constant related the force acting between two static bodies to the "charges" of the bodies (i.e. the electric charge for electrostatic and the mass for Newtonian gravity) divided by the distance squared, , between the bodies; thus: in for Newtonian gravity and in for electrostatic. This description remains valid in modern physics for linear theories with static bodies and massless force carriers.
A modern and more general definition uses the Lagrangian (or equivalently the Hamiltonian ) of a system. Usually, (or ) of a system describing an interaction can be separated into a kinetic part and an interaction part : (or ).
In field theory, always contains 3 fields terms or more, expressing for example that an initial electron (field 1) interacted with a photon (field 2) producing the final state of the electron (field 3). In contrast, the kinetic part always contains only two fields, expressing the free propagation of an initial particle (field 1) into a later state (field 2).
The coupling constant determines the magnitude of the part with respect to the part (or between two sectors of the interaction part if several fields that couple differently are present). For example, the electric charge of a particle is a coupling constant that characterizes an interaction with two charge-carrying fields and one photon field (hence the common Feynman diagram with two arrows and one wavy line). Since photons mediate the electromagnetic force, this coupling determines how strongly electrons feel such a force, and has its value fixed by experiment. By looking at the QED Lagrangian, one sees that indeed, the coupling sets the proportionality between the kinetic term and the interaction term .
A coupling plays an important role in dynamics. For example, one often sets up hierarchies of approximation based on the importance of various coupling constants.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course is an introduction to the non-perturbative bootstrap approach to Conformal Field Theory and to the Gauge/Gravity duality, emphasizing the fruitful interplay between these two ideas.
The goal of the course is to introduce relativistic quantum field theory as the conceptual and mathematical framework describing fundamental interactions such as Quantum Electrodynamics.
In physics, a gauge theory is a field theory in which the Lagrangian is invariant under local transformations according to certain smooth families of operations (Lie groups). The term gauge refers to any specific mathematical formalism to regulate redundant degrees of freedom in the Lagrangian of a physical system. The transformations between possible gauges, called gauge transformations, form a Lie group—referred to as the symmetry group or the gauge group of the theory. Associated with any Lie group is the Lie algebra of group generators.
In physics, the fine-structure constant, also known as the Sommerfeld constant, commonly denoted by α (the Greek letter alpha), is a fundamental physical constant which quantifies the strength of the electromagnetic interaction between elementary charged particles. It is a dimensionless quantity, independent of the system of units used, which is related to the strength of the coupling of an elementary charge e with the electromagnetic field, by the formula 4πε_0ħcα = e^2. Its numerical value is approximately 0.
In quantum field theory, asymptotic freedom is a property of some gauge theories that causes interactions between particles to become asymptotically weaker as the energy scale increases and the corresponding length scale decreases. (Alternatively, and perhaps contrarily, in applying an S-matrix, asymptotically free refers to free particles states in the distant past or the distant future.) Asymptotic freedom is a feature of quantum chromodynamics (QCD), the quantum field theory of the strong interaction between quarks and gluons, the fundamental constituents of nuclear matter.
In the standard framework of self-consistent many-body perturbation theory, the skeleton series for the self-energy is truncated at a finite order N and plugged into the Dyson equation, which is then solved for the propagator G(N). We consider two examples ...
Scipost Foundation2024
Quantum Field Theories are a central object of interest of modern physics, describing fundamental interactions of matter. However, current methods give limited insight into strongly coupling theories. S-matrix bootstrap program, described in this thesis, a ...
A sample of 3984 candidates of the K+ -> pi(+)gamma gamma decay, with an estimated background of 291 +/- 14 events, was collected by the NA62 experiment at CERN during 2017-2018. In order to describe the observed di-photon mass spectrum, the next-to-leadin ...