Concept

Quantum Zeno effect

Summary
The quantum Zeno effect (also known as the Turing paradox) is a feature of quantum-mechanical systems allowing a particle's time evolution to be slowed down by measuring it frequently enough with respect to some chosen measurement setting. Sometimes this effect is interpreted as "a system cannot change while you are watching it". One can "freeze" the evolution of the system by measuring it frequently enough in its known initial state. The meaning of the term has since expanded, leading to a more technical definition, in which time evolution can be suppressed not only by measurement: the quantum Zeno effect is the suppression of unitary time evolution in quantum systems provided by a variety of sources: measurement, interactions with the environment, stochastic fields, among other factors. As an outgrowth of study of the quantum Zeno effect, it has become clear that applying a series of sufficiently strong and fast pulses with appropriate symmetry can also decouple a system from its decohering environment. The first rigorous and general derivation of the quantum Zeno effect was presented in 1974 by Degasperis, Fonda, and Ghirardi, although it had previously been described by Alan Turing. The comparison with Zeno's paradox is due to a 1977 article by George Sudarshan and Baidyanath Misra. The name comes by analogy to Zeno's arrow paradox, which states that because an arrow in flight is not seen to move during any single instant, it cannot possibly be moving at all. In the quantum Zeno effect an unstable state seems frozen – to not 'move' – due to a constant series of observations. According to the reduction postulate, each measurement causes the wavefunction to collapse to an eigenstate of the measurement basis. In the context of this effect, an observation can simply be the absorption of a particle, without the need of an observer in any conventional sense. However, there is controversy over the interpretation of the effect, sometimes referred to as the "measurement problem" in traversing the interface between microscopic and macroscopic objects.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.