Publication

Overhead-constrained circuit knitting for variational quantum dynamics

Abstract

Simulating the dynamics of large quantum systems is a formidable yet vital pursuit for obtaining a deeper understanding of quantum mechanical phenomena. While quantum computers hold great promise for speeding up such simulations, their practical application remains hindered by limited scale and pervasive noise. In this work, we propose an approach that addresses these challenges by employing circuit knitting to partition a large quantum system into smaller subsystems that can each be simulated on a separate device. The evolution of the system is governed by the projected variational quantum dynamics (PVQD) algorithm, supplemented with constraints on the parameters of the variational quantum circuit, ensuring that the sampling overhead imposed by the circuit knitting scheme remains controllable. We test our method on quantum spin systems with multiple weakly entangled blocks each consisting of strongly correlated spins, where we are able to accurately simulate the dynamics while keeping the sampling overhead manageable. Further, we show that the same method can be used to reduce the circuit depth by cutting long-ranged gates.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.