Concept

Skew polygon

Summary
In geometry, a skew polygon is a polygon whose vertices are not all coplanar. Skew polygons must have at least four vertices. The interior surface (or area) of such a polygon is not uniquely defined. Skew infinite polygons (apeirogons) have vertices which are not all colinear. A zig-zag skew polygon or antiprismatic polygon has vertices which alternate on two parallel planes, and thus must be even-sided. Regular skew polygons in 3 dimensions (and regular skew apeirogons in two dimensions) are always zig-zag. A regular skew polygon is isogonal with equal edge lengths. In 3 dimensions a regular skew polygon is a zig-zag skew (or antiprismatic) polygon, with vertices alternating between two parallel planes. The side edges of an n-antiprism can define a regular skew 2n-gon. A regular skew n-gon can be given a Schläfli symbol {p}#{ } as a blend of a regular polygon {p} and an orthogonal line segment { }. The symmetry operation between sequential vertices is glide reflection. Examples are shown on the uniform square and pentagon antiprisms. The star antiprisms also generate regular skew polygons with different connection order of the top and bottom polygons. The filled top and bottom polygons are drawn for structural clarity, and are not part of the skew polygons. A regular compound skew 2n-gon can be similarly constructed by adding a second skew polygon by a rotation. These share the same vertices as the prismatic compound of antiprisms. Petrie polygons are regular skew polygons defined within regular polyhedra and polytopes. For example, the five Platonic solids have 4-, 6-, and 10-sided regular skew polygons, as seen in these orthogonal projections with red edges around their respective projective envelopes. The tetrahedron and the octahedron include all the vertices in their respective zig-zag skew polygons, and can be seen as a digonal antiprism and a triangular antiprism respectively. A regular skew polyhedron has regular polygon faces, and a regular skew polygon vertex figure.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.