Archaeometallurgy is the study of the past use and production of metals by humans. It is a sub-discipline of archaeology and archaeological science.
Archaeometallurgical study has many uses in both the chemical and anthropological fields. Analysis contributes valuable insights into many archaeological questions, from technological choice to social organisation. Any project concerned with the relationship that the human species has had to the metals known to us is an example of archaeometallurgical study.
There are various methodological approaches to archaeometallurgical studies. The same methods used in analytical chemistry may be used to analyze artifacts. Chemical analysis methods may include the analysis of mass, density or chemical composition. Most methods are non-destructive in nature, such as X-ray spectroscopy, or micro-destructive (requiring removal of only a tiny portion of the sample). Non-destructive methods can be used on more artefacts than destructive ones, but because they operate at the surface of the metal, corrosion and other surface effects may interfere with the results. Options that include sampling include various forms of mass spectrometry and a variety of chemical tests.
One of the methods of archaeometallurgy is the study of modern metals and alloys to explain and understand the use of metals in the past. A study conducted by the department of Particle Physics and Astrophysics at Weizmann Institute of Science and the department of Archaeology at the University of Haifia analyzed the chemical composition and the mass of different denominations of Euro coinage. They concluded that even with modern standards and technology, there is a considerable variation within the "same" denomination of coin. This simple conclusion can be used to further analyze discoveries of ancient currency.
The specific study of the non-ferrous metals used in past. Gold, silver and copper were the first to be used by ancient humans. Gold and copper are both found in their 'native' state in nature, and were thus the first to be exploited as they did not need to be smelted from their ores.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ferrous metallurgy is the metallurgy of iron and its alloys. The earliest surviving prehistoric iron artifacts, from the 4th millennium BC in Egypt, were made from meteoritic iron-nickel. It is not known when or where the smelting of iron from ores began, but by the end of the 2nd millennium BC iron was being produced from iron ores in the region from Greece to India, and sub-Saharan Africa. The use of wrought iron (worked iron) was known by the 1st millennium BC, and its spread defined the Iron Age.
Cupellation is a refining process in metallurgy in which ores or alloyed metals are treated under very high temperatures and subjected to controlled operations to separate noble metals, like gold and silver, from base metals, like lead, copper, zinc, arsenic, antimony, or bismuth, present in the ore. The process is based on the principle that precious metals do not oxidise or react chemically, unlike base metals. When they are heated at high temperatures, the precious metals remain apart, and the others react, forming slags or other compounds.
Explores thermophysical properties, lattice deviations, and density measurements in metallurgy, emphasizing practical applications and challenges.