Concept

Cupellation

Summary
Cupellation is a refining process in metallurgy in which ores or alloyed metals are treated under very high temperatures and subjected to controlled operations to separate noble metals, like gold and silver, from base metals, like lead, copper, zinc, arsenic, antimony, or bismuth, present in the ore. The process is based on the principle that precious metals do not oxidise or react chemically, unlike base metals. When they are heated at high temperatures, the precious metals remain apart, and the others react, forming slags or other compounds. Since the Early Bronze Age, the process was used to obtain silver from smelted lead ores. By the Middle Ages and the Renaissance, cupellation was one of the most common processes for refining precious metals. By then, fire assays were used for assaying minerals: testing fresh metals such as lead and recycled metals to determine their purity for jewellery and coin making. Cupellation is still in use today. Native silver is a rare element. Although it exists as such, it is usually found in nature combined with other metals, or in minerals that contain silver compounds, generally in the form of sulfides such as galena (lead sulfide) or cerussite (lead carbonate). So the primary production of silver requires the smelting and then cupellation of argentiferous lead ores. Lead melts at 327 °C, lead oxide at 888 °C, and silver melts at 960 °C. To separate the silver, the alloy is melted again at the high temperature of 960 °C to 1000 °C in an oxidizing environment. The lead oxidises to lead monoxide, then known as litharge, which captures the oxygen from the other metals present. The liquid lead oxide is removed or absorbed by capillary action into the hearth linings. This chemical reaction may be viewed as Ag(s) + 2 Pb(s) + O2(g) → 2 PbO(absorbed) + Ag(l) The base of the hearth was dug in the form of a saucepan and covered with an inert and porous material rich in calcium or magnesium such as shells, lime, or bone ash.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.