A chirp is a signal in which the frequency increases (up-chirp) or decreases (down-chirp) with time. In some sources, the term chirp is used interchangeably with sweep signal. It is commonly applied to sonar, radar, and laser systems, and to other applications, such as in spread-spectrum communications (see chirp spread spectrum). This signal type is biologically inspired and occurs as a phenomenon due to dispersion (a non-linear dependence between frequency and the propagation speed of the wave components). It is usually compensated for by using a matched filter, which can be part of the propagation channel. Depending on the specific performance measure, however, there are better techniques both for radar and communication. Since it was used in radar and space, it has been adopted also for communication standards. For automotive radar applications, it is usually called linear frequency modulated waveform (LFMW). In spread-spectrum usage, surface acoustic wave (SAW) devices are often used to generate and demodulate the chirped signals. In optics, ultrashort laser pulses also exhibit chirp, which, in optical transmission systems, interacts with the dispersion properties of the materials, increasing or decreasing total pulse dispersion as the signal propagates. The name is a reference to the chirping sound made by birds; see bird vocalization. The basic definitions here translate as the common physics quantities location (phase), speed (angular velocity), acceleration (chirpyness). If a waveform is defined as: then the instantaneous angular frequency, ω, is defined as the phase rate as given by the first derivative of phase, with the instantaneous ordinary frequency, f, being its normalized version: Finally, the instantaneous angular chirpyness, γ, is defined to be the second derivative of instantaneous phase or the first derivative of instantaneous angular frequency, with the instantaneous ordinary chirpyness, c, being its normalized version: Thus chirpyness is the rate of change of the instantaneous frequency.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (4)
COM-405: Mobile networks
This course provides a detailed description of the organization and operating principles of mobile and wireless communication networks, as well as the use of wireless signals for sensing and imaging.
EE-540: Optical communications
Situate and evaluate the potentialities, limits and perspectives of optical communication systems and networks. Design and dimension of photonic communication systems and networks
CH-360: Atoms and radiation
This course discusses the interaction between atoms and visible electro-magnetic radiation and introduces the main instrumentation for light detection and spectroscopy. The principles of LASER light s
Show more
Related publications (28)

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.