In computational complexity theory, P, also known as PTIME or DTIME(nO(1)), is a fundamental complexity class. It contains all decision problems that can be solved by a deterministic Turing machine using a polynomial amount of computation time, or polynomial time. Cobham's thesis holds that P is the class of computational problems that are "efficiently solvable" or "tractable". This is inexact: in practice, some problems not known to be in P have practical solutions, and some that are in P do not, but this is a useful rule of thumb. A language L is in P if and only if there exists a deterministic Turing machine M, such that M runs for polynomial time on all inputs For all x in L, M outputs 1 For all x not in L, M outputs 0 P can also be viewed as a uniform family of boolean circuits. A language L is in P if and only if there exists a polynomial-time uniform family of boolean circuits , such that For all , takes n bits as input and outputs 1 bit For all x in L, For all x not in L, The circuit definition can be weakened to use only a logspace uniform family without changing the complexity class. P is known to contain many natural problems, including the decision versions of linear programming, and finding a maximum matching. In 2002, it was shown that the problem of determining if a number is prime is in P. The related class of function problems is FP. Several natural problems are complete for P, including st-connectivity (or reachability) on alternating graphs. The article on P-complete problems lists further relevant problems in P. A generalization of P is NP, which is the class of decision problems decidable by a non-deterministic Turing machine that runs in polynomial time. Equivalently, it is the class of decision problems where each "yes" instance has a polynomial size certificate, and certificates can be checked by a polynomial time deterministic Turing machine. The class of problems for which this is true for the "no" instances is called co-NP.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.