Summary
A neuroscientist (or neurobiologist) is a scientist who has specialised knowledge in neuroscience, a branch of biology that deals with the physiology, biochemistry, psychology, anatomy and molecular biology of neurons, neural circuits, and glial cells and especially their behavioral, biological, and psychological aspect in health and disease. Neuroscientists generally work as researchers within a college, university, government agency, or private industry setting. In research-oriented careers, neuroscientists typically spend their time designing and carrying out scientific experiments that contribute to the understanding of the nervous system and its function. They can engage in basic or applied research. Basic research seeks to add information to our current understanding of the nervous system, whereas applied research seeks to address a specific problem, such as developing a treatment for a neurological disorder. Biomedically-oriented neuroscientists typically engage in applied research. Neuroscientists also have a number of career opportunities outside the realm of research, including careers in industry, science writing, government program management, science advocacy, and education. These individuals most commonly hold doctorate degrees in the sciences, but may also hold a master's degree. Neuroscientists focus primarily on the study and research of the nervous system. The nervous system is composed of the brain, spinal cord and nerve cells. Studies of the nervous system may focus on the cellular level, as in studies of the ion channels, or instead may focus on a systemic level as in behavioural or cognitive studies. A significant portion of nervous system studies is devoted to understanding the diseases that affect the nervous system, like multiple sclerosis, Alzheimer's, Parkinson's, and Lou Gehrig's. Research commonly occurs in private, government and public research institutions and universities.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications (3)

Loading

Loading

Loading

Related people

No results

Related units

No results

Related concepts (27)
Neural circuit
A neural circuit (also known as a biological neural network BNNs) is a population of neurons interconnected by synapses to carry out a specific function when activated. Multiple neural circuits interconnect with one another to form large scale brain networks. Neural circuits have inspired the design of artificial neural networks, though there are significant differences. Early treatments of neural networks can be found in Herbert Spencer's Principles of Psychology, 3rd edition (1872), Theodor Meynert's Psychiatry (1884), William James' Principles of Psychology (1890), and Sigmund Freud's Project for a Scientific Psychology (composed 1895).
Neuroscientist
A neuroscientist (or neurobiologist) is a scientist who has specialised knowledge in neuroscience, a branch of biology that deals with the physiology, biochemistry, psychology, anatomy and molecular biology of neurons, neural circuits, and glial cells and especially their behavioral, biological, and psychological aspect in health and disease. Neuroscientists generally work as researchers within a college, university, government agency, or private industry setting.
Neuroplasticity
Neuroplasticity, also known as neural plasticity, or brain plasticity, is the ability of neural networks in the brain to change through growth and reorganization. It is when the brain is rewired to function in some way that differs from how it previously functioned. These changes range from individual neuron pathways making new connections, to systematic adjustments like cortical remapping. Examples of neuroplasticity include circuit and network changes that result from learning a new ability, information acquisition, environmental influences, practice, and psychological stress.
Show more
Related courses (2)
PHYS-722: Lectures in Neurophysics
This doctoral class will focus on large-scale neural data analysis and large networks, in particular mean-field methods and manifolds.
BIOENG-490: Project in computational neurosciences
The student will engage in a laboratory-based project in the field of computational neuroscience in one of the research labs of the EPFL working in this field.
Related lectures (2)
Concluding remarks
Summarizes the course on brain function, highlighting progress and future directions.
The Neuropixels Platform: Visualizing Electrophysiological Rhythms
Delves into the Neuropixels platform, discussing challenges, prospects, and transformative neuroscience experiments.
Related MOOCs

No results