Summary
An ancillary statistic is a measure of a sample whose distribution (or whose pmf or pdf) does not depend on the parameters of the model. An ancillary statistic is a pivotal quantity that is also a statistic. Ancillary statistics can be used to construct prediction intervals. They are also used in connection with Basu's theorem to prove independence between statistics. This concept was first introduced by Ronald Fisher in the 1920s, but its formal definition was only provided in 1964 by Debabrata Basu. Suppose X1, ..., Xn are independent and identically distributed, and are normally distributed with unknown expected value μ and known variance 1. Let be the sample mean. The following statistical measures of dispersion of the sample Range: max(X1, ..., Xn) − min(X1, ..., Xn) Interquartile range: Q3 − Q1 Sample variance: are all ancillary statistics, because their sampling distributions do not change as μ changes. Computationally, this is because in the formulas, the μ terms cancel – adding a constant number to a distribution (and all samples) changes its sample maximum and minimum by the same amount, so it does not change their difference, and likewise for others: these measures of dispersion do not depend on location. Conversely, given i.i.d. normal variables with known mean 1 and unknown variance σ2, the sample mean is not an ancillary statistic of the variance, as the sampling distribution of the sample mean is N(1, σ2/n), which does depend on σ 2 – this measure of location (specifically, its standard error) depends on dispersion. In a location family of distributions, is an ancillary statistic. In a scale family of distributions, is an ancillary statistic. In a location-scale family of distributions, , where is the sample variance, is an ancillary statistic. It turns out that, if is a non-sufficient statistic and is ancillary, one can sometimes recover all the information about the unknown parameter contained in the entire data by reporting while conditioning on the observed value of . This is known as conditional inference.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (13)
MATH-562: Statistical inference
Inference from the particular to the general based on probability models is central to the statistical method. This course gives a graduate-level account of the main ideas of statistical inference.
MATH-413: Statistics for data science
Statistics lies at the foundation of data science, providing a unifying theoretical and methodological backbone for the diverse tasks enountered in this emerging field. This course rigorously develops
Show more
Related publications (30)
Related concepts (8)
Robust statistics
Robust statistics are statistics with good performance for data drawn from a wide range of probability distributions, especially for distributions that are not normal. Robust statistical methods have been developed for many common problems, such as estimating location, scale, and regression parameters. One motivation is to produce statistical methods that are not unduly affected by outliers. Another motivation is to provide methods with good performance when there are small departures from a parametric distribution.
Completeness (statistics)
In statistics, completeness is a property of a statistic in relation to a parameterised model for a set of observed data. A complete statistic T is one for which any proposed distribution on the domain of T is predicted by one or more prior distributions on the model parameter space. In other words, the model space is 'rich enough' that every possible distribution of T can be explained by some prior distribution on the model parameter space. In contrast, a sufficient statistic T is one for which any two prior distributions will yield different distributions on T.
Sufficient statistic
In statistics, a statistic is sufficient with respect to a statistical model and its associated unknown parameter if "no other statistic that can be calculated from the same sample provides any additional information as to the value of the parameter". In particular, a statistic is sufficient for a family of probability distributions if the sample from which it is calculated gives no additional information than the statistic, as to which of those probability distributions is the sampling distribution.
Show more