In statistics, completeness is a property of a statistic in relation to a parameterised model for a set of observed data.
A complete statistic T is one for which any proposed distribution on the domain of T is predicted by one or more prior distributions on the model parameter space. In other words, the model space is 'rich enough' that every possible distribution of T can be explained by some prior distribution on the model parameter space. In contrast, a sufficient statistic T is one for which any two prior distributions will yield different distributions on T. (This last statement assumes that the model space is identifiable, i.e. that there are no 'duplicate' parameter values. This is a minor point.)
Put another way: assume that we have an identifiable model space parameterised by , and a statistic (which is effectively just a function of one or more i.i.d. random variables drawn from the model). Then consider the map which takes each distribution on model parameter to its induced distribution on statistic . The statistic is said to be complete when is surjective, and sufficient when is injective.
Consider a random variable X whose probability distribution belongs to a parametric model Pθ parametrized by θ.
Say T is a statistic; that is, the composition of a measurable function with a random sample X1,...,Xn.
The statistic T is said to be complete for the distribution of X if, for every measurable function g,:
The statistic T is said to be boundedly complete for the distribution of X if this implication holds for every measurable function g that is also bounded.
The Bernoulli model admits a complete statistic. Let X be a random sample of size n such that each Xi has the same Bernoulli distribution with parameter p. Let T be the number of 1s observed in the sample, i.e. . T is a statistic of X which has a binomial distribution with parameters (n,p). If the parameter space for p is (0,1), then T is a complete statistic. To see this, note that
Observe also that neither p nor 1 − p can be 0.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Statistics lies at the foundation of data science, providing a unifying theoretical and methodological backbone for the diverse tasks enountered in this emerging field. This course rigorously develops
In probability theory and statistics, the Poisson distribution is a discrete probability distribution that expresses the probability of a given number of events occurring in a fixed interval of time or space if these events occur with a known constant mean rate and independently of the time since the last event. It is named after French mathematician Siméon Denis Poisson ('pwɑːsɒn; pwasɔ̃). The Poisson distribution can also be used for the number of events in other specified interval types such as distance, area, or volume.
Estimation theory is a branch of statistics that deals with estimating the values of parameters based on measured empirical data that has a random component. The parameters describe an underlying physical setting in such a way that their value affects the distribution of the measured data. An estimator attempts to approximate the unknown parameters using the measurements.
An ancillary statistic is a measure of a sample whose distribution (or whose pmf or pdf) does not depend on the parameters of the model. An ancillary statistic is a pivotal quantity that is also a statistic. Ancillary statistics can be used to construct prediction intervals. They are also used in connection with Basu's theorem to prove independence between statistics. This concept was first introduced by Ronald Fisher in the 1920s, but its formal definition was only provided in 1964 by Debabrata Basu.
Explores statistical inference, sufficiency, and completeness, emphasizing the importance of sufficient statistics and the role of complete statistics in data reduction.
,
In certain cases of astronomical data analysis, the meaningful physical quantity to extract is the ratio R between two data sets. Examples include the lensing ratio, the interloper rate in spectroscopic redshift samples, and the decay rate of gravitational ...
The Pollution Detection Algorithm (PDA) is an algorithm to identify and flag periods of primary polluted data in remote atmospheric time series in five steps. The first and most important step identifies polluted periods based on the gradient (time-derivat ...
We propose a statistically optimal approach to construct data-driven decisions for stochastic optimization problems. Fundamentally, a data-driven decision is simply a function that maps the available training data to a feasible action. It can always be exp ...