Alireza KarimiAlireza Karimi received his B. Sc. and M. Sc. degrees in Electrical Engineering in 1987 and 1990, respectively, from Amir Kabir University (Tehran Polytechnic). Then he received his DEA and Ph. D. degrees both on Automatic Control from Institut National Polytechnique de Grenoble (INPG) in 1994 and 1997, respectively. He was Assistant Professor at Electrical Engineering Department of Sharif University of Technology in Teheran from 1998 to 2000. Then he joined Automatic Laboratory of Swiss Federal Institute of Technology at Lausanne, Switzerland. He is currently Professor of Automatic Control and the head of "Data-Driven Modelling and Control" group. His research interests include data-driven controller tuning and robust control with application to mechatronic systems and electrical grids.
Ali H. SayedAli H. Sayed is Dean of Engineering at EPFL, Switzerland, where he also leads the Adaptive Systems Laboratory. He has also served as Distinguished Professor and Chairman of Electrical Engineering at UCLA. He is recognized as a Highly Cited Researcher and is a member of the US National Academy of Engineering. He is also a member of the World Academy of Sciences and served as President of the IEEE Signal Processing Society during 2018 and 2019.
Dr. Sayed is an author/co-author of over 570 scholarly publications and six books. His research involves several areas
including adaptation and learning theories, data and network sciences, statistical inference, and multiagent systems.
His work has been recognized with several major awards including the 2022 IEEE Fourier Award, the 2020 Norbert Wiener Society Award and the 2015 Education Award from the IEEE Signal Processing Society, the 2014 Papoulis Award from the European Association for Signal Processing, the 2013 Meritorious Service Award and the 2012 Technical Achievement Award from the IEEE Signal Processing Society, the 2005 Terman Award from the American Society for Engineering Education, the 2005 Distinguished Lecturer from the IEEE Signal Processing Society, the 2003 Kuwait Prize, and the 1996 IEEE Donald G. Fink Prize. His publications have been awarded several Best Paper Awards from the IEEE (2002, 2005, 2012, 2014) and EURASIP (2015). He is a Fellow of IEEE, EURASIP, and the American Association for the Advancement of Science (AAAS); the publisher of the journal Science.
Volkan CevherVolkan Cevher received the B.Sc. (valedictorian) in electrical engineering from Bilkent University in Ankara, Turkey, in 1999 and the Ph.D. in electrical and computer engineering from the Georgia Institute of Technology in Atlanta, GA in 2005. He was a Research Scientist with the University of Maryland, College Park from 2006-2007 and also with Rice University in Houston, TX, from 2008-2009. Currently, he is an Associate Professor at the Swiss Federal Institute of Technology Lausanne and a Faculty Fellow in the Electrical and Computer Engineering Department at Rice University. His research interests include machine learning, signal processing theory, optimization theory and methods, and information theory. Dr. Cevher is an ELLIS fellow and was the recipient of the Google Faculty Research award in 2018, the IEEE Signal Processing Society Best Paper Award in 2016, a Best Paper Award at CAMSAP in 2015, a Best Paper Award at SPARS in 2009, and an ERC CG in 2016 as well as an ERC StG in 2011.
Pascal FuaPascal Fua received an engineering degree from Ecole Polytechnique, Paris, in 1984 and the Ph.D. degree in Computer Science from the University of Orsay in 1989. He then worked at SRI International and INRIA Sophia-Antipolis as a Computer Scientist. He joined EPFL in 1996 where he is now a Professor in the School of Computer and Communication Science and heads the Computer Vision Laboratory. His research interests include shape modeling and motion recovery from images, analysis of microscopy images, and Augmented Reality. His research interests include shape modeling and motion recovery from images, analysis of microscopy images, and machine learning. He has (co)authored over 300 publications in refereed journals and conferences. He is an IEEE Fellow and has been an Associate Editor of IEEE journal Transactions for Pattern Analysis and Machine Intelligence. He often serves as program committee member, area chair, and program chair of major vision conferences and has cofounded three spinoff companies (Pix4D, PlayfulVision, and NeuralConcept).
Mathieu SalzmannI am a Senior Researcher at EPFL-CVLab, and, since May 2020, an Artificial Intelligence Engineer at ClearSpace (50%). Previously, I was a Senior Researcher and Research Leader in NICTA's computer vision research group. Prior to this, from Sept. 2010 to Jan 2012, I was a Research Assistant Professor at TTI-Chicago, and, from Feb. 2009 to Aug. 2010, a postdoctoral fellow at ICSI and EECS at UC Berkeley under the supervision of Prof. Trevor Darrell. I obtained my PhD in Jan. 2009 from EPFL under the supervision of Prof. Pascal Fua.
Mohammad Amin ShokrollahiAmin Shokrollahi has worked on a variety of topics, including coding theory, computational number theory and algebra, and computational/algebraic complexity theory. He is best known for his work on iterative decoding algorithms of graph based codes, an area in which he holds a number of granted and pending patents. He is the co-inventor of Tornado codes, and the inventor of Raptor codes. His codes have been standardized and successfully deployed in practical areas dealing with data transmission over lossy networks.
Prior to joining EPFL, Amin Shokrollahi has held positions as the chief scientist of Digital Fountain, member of the technical staff at Bell Laboratories, senior researcher at the International Computer Science Insitute in Berkeley, and assistant professor at the department of computer science of the university of Bonn. He is a Fellow of the IEEE, and he was awarded the Best Paper Award of the IEEE IT Society in 2002 for his work on iterative decoding of LDPC code, the IEEE Eric Sumner Award in 2007 for the development of Fountain Codes, and the joint Communication Society/Information Theory Society best paper award of 2007 for his paper on Raptor Codes.