Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.
DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.
Evaluating the action of a matrix function on a vector, that is x=f(M)v, is an ubiquitous task in applications. When M is large, one usually relies on Krylov projection methods. In this paper, we provide effective choices for the pole ...
The problem of allocating the closed-loop poles of linear systems in specific regions of the complex plane defined by discrete time-domain requirements is addressed. The resulting non-convex set is inner-approximated by a convex region described with linea ...
In this work, we consider two types of large-scale quadratic matrix equations: Continuous-time algebraic Riccati equations, which play a central role in optimal and robust control, and unilateral quadratic matrix equations, which arise from stochastic proc ...
Linear matrix equations, such as the Sylvester and Lyapunov equations, play an important role in various applications, including the stability analysis and dimensionality reduction of linear dynamical control systems and the solution of partial differentia ...
Matrices with hierarchical low-rank structure, including HODLR and HSS matrices, constitute a versatile tool to develop fast algorithms for addressing large-scale problems. While existing software packages for such matrices often focus on linear systems, t ...
We consider a divergence-form elliptic difference operator on the lattice Zd, with a coefficient matrix that is an i.i.d. perturbation of the identity matrix. Recently, Bourgain introduced novel techniques from harmonic analysis to prove the convergence of ...
We consider constraints on the S-matrix of any gapped, Lorentz invariant quantum field theory in 3+1 dimensions due to crossing symmetry, analyticity and unitarity. We extremize cubic couplings, quartic couplings and scattering lengths relevant for the ela ...
We prove exponential convergence to equilibrium for the Fredrickson-Andersen one-spin facilitated model on bounded degree graphs satisfying a subexponential, but larger than polynomial, growth condition. This was a classical conjecture related to non-attra ...
We propose a stochastic gradient framework for solving stochastic composite convex optimization problems with (possibly) infinite number of linear inclusion constraints that need to be satisfied almost surely. We use smoothing and homotopy techniques to ha ...
This work presents and studies a distributed algorithm for solving optimization problems over networks where agents have individual costs to minimize subject to subspace constraints that require the minimizers across the network to lie in a low-dimensional ...