Concept

Trisomy X

Trisomy X, also known as triple X syndrome and characterized by the karyotype 47,XXX, is a chromosome disorder in which a female has an extra copy of the X chromosome. It is relatively common and occurs in 1 in 1,000 females but it is rarely diagnosed; fewer than 10 per cent of those with the condition know they have it. Those who have symptoms can have learning disabilities, mild dysmorphic features such as hypertelorism (wide-spaced eyes) and clinodactyly (incurved little fingers), early menopause, and increased height. The average intelligence quotient (IQ) in trisomy X is 8590. As the symptoms of trisomy X are often not serious enough to prompt a karyotype test, many cases of trisomy X are diagnosed before birth via prenatal screening tests such as amniocentesis. Research on girls and women with the disorder finds that cases which were diagnosed postnatally, having been referred for testing because of obvious symptoms, are generally more severe than those diagnosed prenatally. Most women with trisomy X live normal lives, although their socioeconomic status is reduced compared to the general population. Trisomy X occurs via a process called nondisjunction, in which normal cell division is interrupted and produces gametes with too many or too few chromosomes. Nondisjunction is a random occurrence, and most girls and women with trisomy X have no family histories of chromosome aneuploidy. Advanced maternal age is mildly associated with trisomy X. Women with trisomy X can have children of their own, who in most cases do not have an increased risk of chromosome disorders; women with mosaic trisomy X, who have a mix of 46,XX (the typical female karyotype) and 47,XXX cells, may have an increased risk of chromosomally abnormal children. First reported in 1959 by the geneticist Patricia Jacobs, the early understanding of trisomy X was that of a debilitating disability observed in institutionalized women.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (15)
BIO-105: Cellular biology and biochemistry for engineers
Basic course in biochemistry as well as cellular and molecular biology for non-life science students enrolling at the Master or PhD thesis level from various engineering disciplines. It reviews essent
PHYS-467: Machine learning for physicists
Machine learning and data analysis are becoming increasingly central in sciences including physics. In this course, fundamental principles and methods of machine learning will be introduced and practi
BIO-109: Introduction to life sciences (for IC)
Ce cours présente les principes fondamentaux à l'œuvre dans les organismes vivants. Autant que possible, l'accent est mis sur les contributions de l'Informatique aux progrès des Sciences de la Vie.
Show more
Related lectures (46)
Chromosome Anomalies: Trisomy and Uniparental Disomy
Covers DNA replication, PCR technology, microsatellites, placental trisomy, and genetic anomalies in prenatal testing.
Transformations of Joint Densities
Covers the transformations of joint continuous densities and their implications on probability distributions.
Chromosome 7: Trisomy Correction Mechanisms
Explores trisomy correction mechanisms, mosaicism, and genetic disorder diagnosis challenges.
Show more
Related publications (9)

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.