Positional notationPositional notation (or place-value notation, or positional numeral system) usually denotes the extension to any base of the Hindu–Arabic numeral system (or decimal system). More generally, a positional system is a numeral system in which the contribution of a digit to the value of a number is the value of the digit multiplied by a factor determined by the position of the digit. In early numeral systems, such as Roman numerals, a digit has only one value: I means one, X means ten and C a hundred (however, the value may be negated if placed before another digit).
Modular multiplicative inverseIn mathematics, particularly in the area of arithmetic, a modular multiplicative inverse of an integer a is an integer x such that the product ax is congruent to 1 with respect to the modulus m. In the standard notation of modular arithmetic this congruence is written as which is the shorthand way of writing the statement that m divides (evenly) the quantity ax − 1, or, put another way, the remainder after dividing ax by the integer m is 1.
Division (mathematics)Division is one of the four basic operations of arithmetic. The other operations are addition, subtraction, and multiplication. What is being divided is called the dividend, which is divided by the divisor, and the result is called the quotient. At an elementary level the division of two natural numbers is, among other possible interpretations, the process of calculating the number of times one number is contained within another. This number of times need not be an integer.
Division by zeroIn mathematics, division by zero is division where the divisor (denominator) is zero. Such a division can be formally expressed as , where a is the dividend (numerator). In ordinary arithmetic, the expression has no meaning, as there is no number that, when multiplied by 0, gives a (assuming ); thus, division by zero is undefined (a type of singularity). Since any number multiplied by zero is zero, the expression is also undefined; when it is the form of a limit, it is an indeterminate form.
DivisorIn mathematics, a divisor of an integer , also called a factor of , is an integer that may be multiplied by some integer to produce . In this case, one also says that is a multiple of An integer is divisible or evenly divisible by another integer if is a divisor of ; this implies dividing by leaves no remainder. An integer n is divisible by a nonzero integer m if there exists an integer k such that . This is written as Other ways of saying the same thing are that m divides n, m is a divisor of n, m is a factor of n, and n is a multiple of m.
Division algorithmA division algorithm is an algorithm which, given two integers N and D (respectively the numerator and the denominator), computes their quotient and/or remainder, the result of Euclidean division. Some are applied by hand, while others are employed by digital circuit designs and software. Division algorithms fall into two main categories: slow division and fast division. Slow division algorithms produce one digit of the final quotient per iteration. Examples of slow division include restoring, non-performing restoring, non-restoring, and SRT division.
Euclid's lemmaIn algebra and number theory, Euclid's lemma is a lemma that captures a fundamental property of prime numbers, namely: For example, if p = 19, a = 133, b = 143, then ab = 133 × 143 = 19019, and since this is divisible by 19, the lemma implies that one or both of 133 or 143 must be as well. In fact, 133 = 19 × 7. If the premise of the lemma does not hold, i.e., p is a composite number, its consequent may be either true or false. For example, in the case of p = 10, a = 4, b = 15, composite number 10 divides ab = 4 × 15 = 60, but 10 divides neither 4 nor 15.