In theoretical physics, general covariance, also known as diffeomorphism covariance or general invariance, consists of the invariance of the form of physical laws under arbitrary differentiable coordinate transformations. The essential idea is that coordinates do not exist a priori in nature, but are only artifices used in describing nature, and hence should play no role in the formulation of fundamental physical laws. While this concept is exhibited by general relativity, which describes the dynamics of spacetime, one should not expect it to hold in less fundamental theories. For matter fields taken to exist independently of the background, it is almost never the case that their equations of motion will take the same form in curved space that they do in flat space.
A physical law expressed in a generally covariant fashion takes the same mathematical form in all coordinate systems, and is usually expressed in terms of tensor fields. The classical (non-quantum) theory of electrodynamics is one theory that has such a formulation.
Albert Einstein proposed this principle for his special theory of relativity; however, that theory was limited to spacetime coordinate systems related to each other by uniform inertial motion, meaning relative motion in any straight line without acceleration. Einstein recognized that the general principle of relativity should also apply to accelerated relative motions, and he used the newly developed tool of tensor calculus to extend the special theory's global Lorentz covariance (applying only to inertial frames) to the more general local Lorentz covariance (which applies to all frames), eventually producing his general theory of relativity. The local reduction of the metric tensor to the Minkowski metric tensor corresponds to free-falling (geodesic) motion, in this theory, thus encompassing the phenomenon of gravitation.
Much of the work on classical unified field theories consisted of attempts to further extend the general theory of relativity to interpret additional physical phenomena, particularly electromagnetism, within the framework of general covariance, and more specifically as purely geometric objects in the spacetime continuum.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course is the basic introduction to modern cosmology. It introduces students to the main concepts and formalism of cosmology, the observational status of Hot Big Bang theory
and discusses major
Biology is becoming more and more a data science, as illustrated by the explosion of available genome sequences. This course aims to show how we can make sense of such data and harness it in order to
In physics, a symmetry of a physical system is a physical or mathematical feature of the system (observed or intrinsic) that is preserved or remains unchanged under some transformation. A family of particular transformations may be continuous (such as rotation of a circle) or discrete (e.g., reflection of a bilaterally symmetric figure, or rotation of a regular polygon). Continuous and discrete transformations give rise to corresponding types of symmetries.
In physics, a gauge theory is a field theory in which the Lagrangian is invariant under local transformations according to certain smooth families of operations (Lie groups). The term gauge refers to any specific mathematical formalism to regulate redundant degrees of freedom in the Lagrangian of a physical system. The transformations between possible gauges, called gauge transformations, form a Lie group—referred to as the symmetry group or the gauge group of the theory. Associated with any Lie group is the Lie algebra of group generators.
In physics, the principle of relativity is the requirement that the equations describing the laws of physics have the same form in all admissible frames of reference. For example, in the framework of special relativity the Maxwell equations have the same form in all inertial frames of reference. In the framework of general relativity the Maxwell equations or the Einstein field equations have the same form in arbitrary frames of reference.
The long-wavelength behavior of vibrational modes plays a central role in carrier transport, phonon-assisted optical properties, superconductivity, and thermomechanical and thermoelectric properties of materials. Here, we present general invariance and equ ...
Accretion disks surrounding compact objects, and other environmental factors, deviate satellites from geodetic motion. Unfortunately, setting up the equations of motion for such relativistic trajectories is not as simple as in Newtonian mechanics. The prin ...
In [1], logarithmic correction to subleading soft photon and soft graviton theorems have been derived in four spacetime dimensions from the ratio of IR-finite S-matrices. This has been achieved after factoring out IR-divergent components from the tradition ...