In population genetics, F-statistics (also known as fixation indices) describe the statistically expected level of heterozygosity in a population; more specifically the expected degree of (usually) a reduction in heterozygosity when compared to Hardy–Weinberg expectation.
F-statistics can also be thought of as a measure of the correlation between genes drawn at different levels of a (hierarchically) subdivided population. This correlation is influenced by several evolutionary processes, such as genetic drift, founder effect, bottleneck, genetic hitchhiking, meiotic drive, mutation, gene flow, inbreeding, natural selection, or the Wahlund effect, but it was originally designed to measure the amount of allelic fixation owing to genetic drift.
The concept of F-statistics was developed during the 1920s by the American geneticist Sewall Wright, who was interested in inbreeding in cattle. However, because complete dominance causes the phenotypes of homozygote dominants and heterozygotes to be the same, it was not until the advent of molecular genetics from the 1960s onwards that heterozygosity in populations could be measured.
F can be used to define effective population size.
The measures FIS, FST, and FIT are related to the amounts of heterozygosity at various levels of population structure. Together, they are called F-statistics, and are derived from F, the inbreeding coefficient. In a simple two-allele system with inbreeding, the genotypic frequencies are:
The value for is found by solving the equation for using heterozygotes in the above inbred population. This becomes one minus the observed frequency of heterozygotes in a population divided by the expected frequency of heterozygotes at Hardy–Weinberg equilibrium:
where the expected frequency at Hardy–Weinberg equilibrium is given by
where and are the allele frequencies of and , respectively. It is also the probability that at any locus, two alleles from a random individual of the population are identical by descent.
For example, consider the data from E.B.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Population genetics is a subfield of genetics that deals with genetic differences within and among populations, and is a part of evolutionary biology. Studies in this branch of biology examine such phenomena as adaptation, speciation, and population structure. Population genetics was a vital ingredient in the emergence of the modern evolutionary synthesis. Its primary founders were Sewall Wright, J. B. S. Haldane and Ronald Fisher, who also laid the foundations for the related discipline of quantitative genetics.
In population genetics, the founder effect is the loss of genetic variation that occurs when a new population is established by a very small number of individuals from a larger population. It was first fully outlined by Ernst Mayr in 1942, using existing theoretical work by those such as Sewall Wright. As a result of the loss of genetic variation, the new population may be distinctively different, both genotypically and phenotypically, from the parent population from which it is derived.
In population genetics, gene flow (also known as migration and allele flow) is the transfer of genetic material from one population to another. If the rate of gene flow is high enough, then two populations will have equivalent allele frequencies and therefore can be considered a single effective population. It has been shown that it takes only "one migrant per generation" to prevent populations from diverging due to drift. Populations can diverge due to selection even when they are exchanging alleles, if the selection pressure is strong enough.
Regression modelling is a fundamental tool of statistics, because it describes how the law of a random variable of interest may depend on other variables. This course aims to familiarize students with
Nature, In Code teaches basic biological principles - such as natural selection, epidemics, the evolution of cooperation - by implementing those priciples in the programming language JavaScript. The c
In 2007, FAO (Food and Agriculture Organization, from the United Nations) initiated the Global plan of action for Farm Animal Genetic Resources (FAnGR) to reduce further loss of genetic diversity in farm animals. One of the key issues mentioned is to ident ...
The Montecristo wild goat is an endangered feral population that has been on the homonymous island in the Tuscan Archipelago since ancient times. The origins of Montecristo goats are still debated, with authors dating their introduction either back to Neol ...
We developed used a WebGIS platform prototype (GenMon) based on open source software (PostgreSQL, PostGIS, OpenLayers, Geoserver), to assess pedigree information, geographical concentration, socio-economic and environmental information. GenMon includes Pop ...