In computer vision, blob detection methods are aimed at detecting regions in a that differ in properties, such as brightness or color, compared to surrounding regions. Informally, a blob is a region of an image in which some properties are constant or approximately constant; all the points in a blob can be considered in some sense to be similar to each other. The most common method for blob detection is convolution. Given some property of interest expressed as a function of position on the image, there are two main classes of blob detectors: (i) differential methods, which are based on derivatives of the function with respect to position, and (ii) methods based on local extrema, which are based on finding the local maxima and minima of the function. With the more recent terminology used in the field, these detectors can also be referred to as interest point operators, or alternatively interest region operators (see also interest point detection and corner detection). There are several motivations for studying and developing blob detectors. One main reason is to provide complementary information about regions, which is not obtained from edge detectors or corner detectors. In early work in the area, blob detection was used to obtain regions of interest for further processing. These regions could signal the presence of objects or parts of objects in the image domain with application to object recognition and/or object tracking. In other domains, such as analysis, blob descriptors can also be used for peak detection with application to . Another common use of blob descriptors is as main primitives for texture analysis and texture recognition. In more recent work, blob descriptors have found increasingly popular use as interest points for wide baseline and to signal the presence of informative image features for appearance-based object recognition based on local image statistics. There is also the related notion of ridge detection to signal the presence of elongated objects.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications (211)
Related concepts (13)
Feature (computer vision)
In computer vision and , a feature is a piece of information about the content of an image; typically about whether a certain region of the image has certain properties. Features may be specific structures in the image such as points, edges or objects. Features may also be the result of a general neighborhood operation or feature detection applied to the image. Other examples of features are related to motion in image sequences, or to shapes defined in terms of curves or boundaries between different image regions.
Corner detection
Corner detection is an approach used within computer vision systems to extract certain kinds of features and infer the contents of an image. Corner detection is frequently used in motion detection, , video tracking, image mosaicing, panorama stitching, 3D reconstruction and object recognition. Corner detection overlaps with the topic of interest point detection. A corner can be defined as the intersection of two edges. A corner can also be defined as a point for which there are two dominant and different edge directions in a local neighbourhood of the point.
Ridge detection
In , ridge detection is the attempt, via software, to locate ridges in an , defined as curves whose points are local maxima of the function, akin to geographical ridges. For a function of N variables, its ridges are a set of curves whose points are local maxima in N − 1 dimensions. In this respect, the notion of ridge points extends the concept of a local maximum. Correspondingly, the notion of valleys for a function can be defined by replacing the condition of a local maximum with the condition of a local minimum.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.