Concept

Schwinger's quantum action principle

The Schwinger's quantum action principle is a variational approach to quantum mechanics and quantum field theory. This theory was introduced by Julian Schwinger in a series of articles starting 1950. In Schwingers approach, the action principle is targeted towards quantum mechanics. The action becomes a quantum action, i.e. an operator, . Although it is superficially different from the path integral formulation where the action is a classical function, the modern formulation of the two formalisms are identical. Suppose we have two states defined by the values of a complete set of commuting operators at two times. Let the early and late states be and , respectively. Suppose that there is a parameter in the Lagrangian which can be varied, usually a source for a field. The main equation of Schwinger's quantum action principle is: where the derivative is with respect to small changes () in the parameter, and with the Lagrange operator. In the path integral formulation, the transition amplitude is represented by the sum over all histories of , with appropriate boundary conditions representing the states and . The infinitesimal change in the amplitude is clearly given by Schwinger's formula. Conversely, starting from Schwinger's formula, it is easy to show that the fields obey canonical commutation relations and the classical equations of motion, and so have a path integral representation. Schwinger's formulation was most significant because it could treat fermionic anticommuting fields with the same formalism as bose fields, thus implicitly introducing differentiation and integration with respect to anti-commuting coordinates.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.