Concept

Roadrunner (supercomputer)

Summary
Roadrunner was a supercomputer built by IBM for the Los Alamos National Laboratory in New Mexico, USA. The US$100-million Roadrunner was designed for a peak performance of 1.7 petaflops. It achieved 1.026 petaflops on May 25, 2008, to become the world's first TOP500 LINPACK sustained 1.0 petaflops system. In November 2008, it reached a top performance of 1.456 petaFLOPS, retaining its top spot in the TOP500 list. It was also the fourth-most energy-efficient supercomputer in the world on the Supermicro Green500 list, with an operational rate of 444.94 megaflops per watt of power used. The hybrid Roadrunner design was then reused for several other energy efficient supercomputers. Roadrunner was decommissioned by Los Alamos on March 31, 2013. In its place, Los Alamos commissioned a supercomputer called Cielo, which was installed in 2010. IBM built the computer for the U.S. Department of Energy's (DOE) National Nuclear Security Administration (NNSA). It was a hybrid design with 12,960 IBM PowerXCell 8i and 6,480 AMD Opteron dual-core processors in specially designed blade servers connected by InfiniBand. The Roadrunner used Red Hat Enterprise Linux along with Fedora as its operating systems, and was managed with xCAT distributed computing software. It also used the Open MPI Message Passing Interface implementation. Roadrunner occupied approximately 296 server racks which covered and became operational in 2008. It was decommissioned March 31, 2013. The DOE used the computer for simulating how nuclear materials age in order to predict whether the USA's aging arsenal of nuclear weapons are both safe and reliable. Other uses for the Roadrunner included the science, financial, automotive, and aerospace industries. Roadrunner differed from other contemporary supercomputers because it continued the hybrid approach to supercomputer design introduced by Seymour Cray in 1964 with the Control Data Corporation CDC 6600 and continued with the order of magnitude faster CDC 7600 in 1969.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.