In quantum chemistry and molecular physics, the Born–Oppenheimer (BO) approximation is the best-known mathematical approximation in molecular dynamics. Specifically, it is the assumption that the wave functions of atomic nuclei and electrons in a molecule can be treated separately, based on the fact that the nuclei are much heavier than the electrons. Due to the larger relative mass of a nucleus compared to an electron, the coordinates of the nuclei in a system are approximated as fixed, while the coordinates of the electrons are dynamic. The approach is named after Max Born and his 23-year-old graduate student J. Robert Oppenheimer, the latter of whom proposed it in 1927 during a period of intense ferment in the development of quantum mechanics. The approximation is widely used in quantum chemistry to speed up the computation of molecular wavefunctions and other properties for large molecules. There are cases where the assumption of separable motion no longer holds, which make the approximation lose validity (it is said to "break down"), but even then the approximation is usually used as a starting point for more refined methods. In molecular infrared spectroscopy, using the BO approximation means considering molecular energy as a sum of independent terms, e.g.: These terms are of different orders of magnitude and the nuclear spin energy is so small that it is often omitted. The electronic energies consist of kinetic energies, interelectronic repulsions, internuclear repulsions, and electron–nuclear attractions, which are the terms typically included when computing the electronic structure of molecules. The benzene molecule consists of 12 nuclei and 42 electrons. The Schrödinger equation, which must be solved to obtain the energy levels and wavefunction of this molecule, is a partial differential eigenvalue equation in the three-dimensional coordinates of the nuclei and electrons, giving 3 × 12 = 36 nuclear + 3 × 42 = 126 electronic = 162 variables for the wave function. The computational complexity, i.e.