Summary
Biological or process structuralism is a school of biological thought that objects to an exclusively Darwinian or adaptationist explanation of natural selection such as is described in the 20th century's modern synthesis. It proposes instead that evolution is guided differently, basically by more or less physical forces which shape the development of an animal's body, and sometimes implies that these forces supersede selection altogether. Structuralists have proposed different mechanisms that might have guided the formation of body plans. Before Darwin, Étienne Geoffroy Saint-Hilaire argued that animals shared homologous parts, and that if one was enlarged, the others would be reduced in compensation. After Darwin, D'Arcy Thompson hinted at vitalism and offered geometric explanations in his classic 1917 book On Growth and Form. Adolf Seilacher suggested mechanical inflation for "pneu" structures in Ediacaran biota fossils such as Dickinsonia. Günter P. Wagner argued for developmental bias, structural constraints on embryonic development. Stuart Kauffman favoured self-organisation, the idea that complex structure emerges holistically and spontaneously from the dynamic interaction of all parts of an organism. Michael Denton argued for laws of form by which Platonic universals or "Types" are self-organised. Stephen J. Gould and Richard Lewontin proposed biological "spandrels", features created as a byproduct of the adaptation of nearby structures. Gerd B. Müller and Stuart A. Newman argued that the appearance in the fossil record of most of the current phyla in the Cambrian explosion was "pre-Mendelian" evolution caused by physical factors. Brian Goodwin, described by Wagner as part of "a fringe movement in evolutionary biology", denies that biological complexity can be reduced to natural selection, and argues that pattern formation is driven by morphogenetic fields. Darwinian biologists have criticised structuralism, emphasising that there is plentiful evidence both that natural selection is effective and, from deep homology, that genes have been involved in shaping organisms throughout evolutionary history.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related publications (20)

Protein Structural Information and Evolutionary Landscape by In Vitro Evolution

Paolo De Los Rios

Protein structure is tightly intertwined with function according to the laws of evolution. Understanding how structure determines function has been the aim of structural biology for decades. Here, we have wondered instead whether it is possible to exploit ...
OXFORD UNIV PRESS2020

Mechanics and co-evolution of allosteric materials and proteins

Riccardo Ravasio

The regulation of several processes inside and outside the cell depends on the action of a particular class of enzymes, called allosteric. In allosteric macromolecules, binding a ligand at one site affects the binding activity at a distal functional site, ...
EPFL2020

Characterization of Protein-Membrane Interfaces through a Synergistic Computational-Experimental Approach

Alessio Prunotto

The characterization of biological interfaces is widely recognized as one of the main challenges for modern biology. In particular, biological membranes are nowadays known to be an active environment that allows membrane proteins to perform their work and ...
EPFL2020
Show more
Related people (1)
Related concepts (5)
History of evolutionary thought
Evolutionary thought, the recognition that species change over time and the perceived understanding of how such processes work, has roots in antiquity—in the ideas of the ancient Greeks, Romans, Chinese, Church Fathers as well as in medieval Islamic science.
Orthogenesis
Orthogenesis, also known as orthogenetic evolution, progressive evolution, evolutionary progress, or progressionism, is an obsolete biological hypothesis that organisms have an innate tendency to evolve in a definite direction towards some goal (teleology) due to some internal mechanism or "driving force". According to the theory, the largest-scale trends in evolution have an absolute goal such as increasing biological complexity.
Alternatives to Darwinian evolution
Alternatives to Darwinian evolution have been proposed by scholars investigating biology to explain signs of evolution and the relatedness of different groups of living things. The alternatives in question do not deny that evolutionary changes over time are the origin of the diversity of life, nor that the organisms alive today share a common ancestor from the distant past (or ancestors, in some proposals); rather, they propose alternative mechanisms of evolutionary change over time, arguing against mutations acted on by natural selection as the most important driver of evolutionary change.
Show more