Concept

Diamond principle

Summary
In mathematics, and particularly in axiomatic set theory, the diamond principle ◊ is a combinatorial principle introduced by Ronald Jensen in that holds in the constructible universe (L) and that implies the continuum hypothesis. Jensen extracted the diamond principle from his proof that the axiom of constructibility (V = L) implies the existence of a Suslin tree. The diamond principle ◊ says that there exists a , a family of sets Aα ⊆ α for α < ω1 such that for any subset A of ω1 the set of α with A ∩ α = Aα is stationary in ω1. There are several equivalent forms of the diamond principle. One states that there is a countable collection Aα of subsets of α for each countable ordinal α such that for any subset A of ω1 there is a stationary subset C of ω1 such that for all α in C we have A ∩ α ∈ Aα and C ∩ α ∈ Aα. Another equivalent form states that there exist sets Aα ⊆ α for α < ω1 such that for any subset A of ω1 there is at least one infinite α with A ∩ α = Aα. More generally, for a given cardinal number κ and a stationary set S ⊆ κ, the statement ◊S (sometimes written ◊(S) or ◊κ(S)) is the statement that there is a sequence ⟨Aα : α ∈ S⟩ such that each Aα ⊆ α for every A ⊆ κ, {α ∈ S : A ∩ α = Aα} is stationary in κ The principle ◊ω1 is the same as ◊. The diamond-plus principle ◊+ states that there exists a ◊+-sequence, in other words a countable collection Aα of subsets of α for each countable ordinal α such that for any subset A of ω1 there is a closed unbounded subset C of ω1 such that for all α in C we have A ∩ α ∈ Aα and C ∩ α ∈ Aα. showed that the diamond principle ◊ implies the existence of Suslin trees. He also showed that V = L implies the diamond-plus principle, which implies the diamond principle, which implies CH. In particular the diamond principle and the diamond-plus principle are both independent of the axioms of ZFC. Also ♣ + CH implies ◊, but Shelah gave models of ♣ + ¬ CH, so ◊ and ♣ are not equivalent (rather, ♣ is weaker than ◊).
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.