In mathematics, and particularly in axiomatic set theory, the diamond principle ◊ is a combinatorial principle introduced by Ronald Jensen in that holds in the constructible universe (L) and that implies the continuum hypothesis. Jensen extracted the diamond principle from his proof that the axiom of constructibility (V = L) implies the existence of a Suslin tree.
The diamond principle ◊ says that there exists a , a family of sets Aα ⊆ α for α < ω1 such that for any subset A of ω1 the set of α with A ∩ α = Aα is stationary in ω1.
There are several equivalent forms of the diamond principle. One states that there is a countable collection Aα of subsets of α for each countable ordinal α such that for any subset A of ω1 there is a stationary subset C of ω1 such that for all α in C we have A ∩ α ∈ Aα and C ∩ α ∈ Aα. Another equivalent form states that there exist sets Aα ⊆ α for α < ω1 such that for any subset A of ω1 there is at least one infinite α with A ∩ α = Aα.
More generally, for a given cardinal number κ and a stationary set S ⊆ κ, the statement ◊S (sometimes written ◊(S) or ◊κ(S)) is the statement that there is a sequence ⟨Aα : α ∈ S⟩ such that
each Aα ⊆ α
for every A ⊆ κ, {α ∈ S : A ∩ α = Aα} is stationary in κ
The principle ◊ω1 is the same as ◊.
The diamond-plus principle ◊+ states that there exists a ◊+-sequence, in other words a countable collection Aα of subsets of α for each countable ordinal α such that for any subset A of ω1 there is a closed unbounded subset C of ω1 such that for all α in C we have A ∩ α ∈ Aα and C ∩ α ∈ Aα.
showed that the diamond principle ◊ implies the existence of Suslin trees. He also showed that V = L implies the diamond-plus principle, which implies the diamond principle, which implies CH. In particular the diamond principle and the diamond-plus principle are both independent of the axioms of ZFC. Also ♣ + CH implies ◊, but Shelah gave models of ♣ + ¬ CH, so ◊ and ♣ are not equivalent (rather, ♣ is weaker than ◊).
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
L'axiome de constructibilité est un des axiomes possibles de la théorie des ensembles affirmant que tout ensemble est constructible. Cet axiome est généralement résumé par = , où représente la classe des ensembles et est l’univers constructible, la classe des ensembles récursivement définissables via un langage approprié.
vignette|L'appartenance En mathématiques, la théorie des ensembles de Zermelo-Fraenkel, abrégée en ZF, est une axiomatisation en logique du premier ordre de la théorie des ensembles telle qu'elle avait été développée dans le dernier quart du par Georg Cantor. L'axiomatisation a été élaborée au début du par plusieurs mathématiciens dont Ernst Zermelo et Abraham Fraenkel mais aussi Thoralf Skolem.