In physics, mathematics and statistics, scale invariance is a feature of objects or laws that do not change if scales of length, energy, or other variables, are multiplied by a common factor, and thus represent a universality.
The technical term for this transformation is a dilatation (also known as dilation). Dilatations can form part of a larger conformal symmetry.
In mathematics, scale invariance usually refers to an invariance of individual functions or curves. A closely related concept is self-similarity, where a function or curve is invariant under a discrete subset of the dilations. It is also possible for the probability distributions of random processes to display this kind of scale invariance or self-similarity.
In classical field theory, scale invariance most commonly applies to the invariance of a whole theory under dilatations. Such theories typically describe classical physical processes with no characteristic length scale.
In quantum field theory, scale invariance has an interpretation in terms of particle physics. In a scale-invariant theory, the strength of particle interactions does not depend on the energy of the particles involved.
In statistical mechanics, scale invariance is a feature of phase transitions. The key observation is that near a phase transition or critical point, fluctuations occur at all length scales, and thus one should look for an explicitly scale-invariant theory to describe the phenomena. Such theories are scale-invariant statistical field theories, and are formally very similar to scale-invariant quantum field theories.
Universality is the observation that widely different microscopic systems can display the same behaviour at a phase transition. Thus phase transitions in many different systems may be described by the same underlying scale-invariant theory.
In general, dimensionless quantities are scale invariant. The analogous concept in statistics are standardized moments, which are scale invariant statistics of a variable, while the unstandardized moments are not.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Critical exponents describe the behavior of physical quantities near continuous phase transitions. It is believed, though not proven, that they are universal, i.e. they do not depend on the details of the physical system, but only on some of its general features. For instance, for ferromagnetic systems, the critical exponents depend only on: the dimension of the system the range of the interaction the spin dimension These properties of critical exponents are supported by experimental data.
In mathematical physics, the conformal symmetry of spacetime is expressed by an extension of the Poincaré group, known as the conformal group. The extension includes special conformal transformations and dilations. In three spatial plus one time dimensions, conformal symmetry has 15 degrees of freedom: ten for the Poincaré group, four for special conformal transformations, and one for a dilation. Harry Bateman and Ebenezer Cunningham were the first to study the conformal symmetry of Maxwell's equations.
In probability and statistics, the Tweedie distributions are a family of probability distributions which include the purely continuous normal, gamma and inverse Gaussian distributions, the purely discrete scaled Poisson distribution, and the class of compound Poisson–gamma distributions which have positive mass at zero, but are otherwise continuous. Tweedie distributions are a special case of exponential dispersion models and are often used as distributions for generalized linear models.
This course is an introduction to the non-perturbative bootstrap approach to Conformal Field Theory and to the Gauge/Gravity duality, emphasizing the fruitful interplay between these two ideas.
This course will give an introduction to some aspects of nonlinear dispersive partial differential equations. These are time evolution problems that arise in many contexts in physics, such as quantum
Using quantum Monte Carlo simulations and field-theory arguments, we study the fully frustrated transversefield Ising model on the square lattice for the purpose of quantitatively relating two different order parameters to each other. We consider a "primar ...
Allometric scaling relations are widely used to link biological processes in nature. They are typically expressed as power laws, postulating that the metabolic rate of an organism scales as its mass to the power of an allometric exponent, which ranges betw ...
The expectation value of a smooth conformal line defect in a CFT is a conformal invariant functional of its path in space-time. For example, in large N holographic theories, these fundamental observables are dual to the open-string partition function in Ad ...