MATH-497: Topology IV.b - homotopy theoryWe propose an introduction to homotopy theory for topological spaces. We define higher homotopy groups and relate them to homology groups. We introduce (co)fibration sequences, loop spaces, and suspen
MATH-494: Topics in arithmetic geometryP-adic numbers are a number theoretic analogue of the real numbers, which interpolate between arithmetics, analysis and geometry. In this course we study their basic properties and give various applic
COM-502: Dynamical system theory for engineersLinear and nonlinear dynamical systems are found in all fields of science and engineering. After a short review of linear system theory, the class will explain and develop the main tools for the quali
MATH-203(a): Analysis III (for SV, MT)The course studies the fundamental concepts of vector analysis and Fourier-Laplace analysis with a view to their use in solving multidisciplinary problems in scientific engineering.
MATH-323: Topology III - HomologyHomology is one of the most important tools to study topological spaces and it plays an important role in many fields of mathematics. The aim of this course is to introduce this notion, understand its
MATH-476: Optimal transportThe first part is devoted to Monge and Kantorovitch problems, discussing the existence and the properties of the optimal plan. The second part introduces the Wasserstein distance on measures and devel