In classical electromagnetism, polarization density (or electric polarization, or simply polarization) is the vector field that expresses the density of permanent or induced electric dipole moments in a dielectric material. When a dielectric is placed in an external electric field, its molecules gain electric dipole moment and the dielectric is said to be polarized. The electric dipole moment induced per unit volume of the dielectric material is called the electric polarization of the dielectric. Polarization density also describes how a material responds to an applied electric field as well as the way the material changes the electric field, and can be used to calculate the forces that result from those interactions. It can be compared to magnetization, which is the measure of the corresponding response of a material to a magnetic field in magnetism. Polarization density is represented by a vector P.. In SI units it is expressed in coulombs per square meter. An external electric field that is applied to a dielectric material, causes a displacement of bound charged elements. These are elements which are bound to molecules and are not free to move around the material. Positive charged elements are displaced in the direction of the field, and negative charged elements are displaced opposite to the direction of the field. The molecules may remain neutral in charge, yet an electric dipole moment forms. For a certain volume element in the material, which carries a dipole moment , we define the polarization density P: In general, the dipole moment changes from point to point within the dielectric. Hence, the polarization density P of a dielectric inside an infinitesimal volume dV with an infinitesimal dipole moment dp is: The net charge appearing as a result of polarization is called bound charge and denoted . This definition of polarization density as a "dipole moment per unit volume" is widely adopted, though in some cases it can lead to ambiguities and paradoxes. Let a volume dV be isolated inside the dielectric.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (17)
PHYS-200: Physics III
The students understand and apply the physics of fluids, and the basics of electromagnetism and electronic schemes
PHYS-201(d): General physics: electromagnetism
The topics covered by the course are concepts of fluid mechanics, waves, and electromagnetism.
PHYS-610: Nonlinear Spectroscopy
Molecular properties relevant for spectroscopy...
Show more
Related concepts (25)
Electric displacement field
In physics, the electric displacement field (denoted by D) or electric induction is a vector field that appears in Maxwell's equations. It accounts for the electromagnetic effects of polarization and that of an electric field, combining the two in an auxiliary field. It plays a major role in topics such as the capacitance of a material, as well the response of dielectrics to electric field, and how shapes can change due to electric fields in piezoelectricity or flexoelectricity as well as the creation of voltages and charge transfer due to elastic strains.
Pyroelectricity
Pyroelectricity (from the two Greek words pyr meaning fire, and electricity) is a property of certain crystals which are naturally electrically polarized and as a result contain large electric fields. Pyroelectricity can be described as the ability of certain materials to generate a temporary voltage when they are heated or cooled. The change in temperature modifies the positions of the atoms slightly within the crystal structure, so that the polarization of the material changes.
Pockels effect
The Pockels effect or Pockels electro-optic effect, also known as the linear electro-optic effect, is named after Friedrich Carl Alwin Pockels who studied the effect in 1893. The Pockels effect is a directionally dependent linear variation in the refractive index of an optical medium that occurs in response to the application of an electric field. The non-linear counterpart, the Kerr effect, causes changes in the refractive index at a rate proportional to the square of the applied electric field.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.