Summary
A rotating black hole is a black hole that possesses angular momentum. In particular, it rotates about one of its axes of symmetry. All celestial objects – planets, stars (Sun), galaxies, black holes – spin. There are four known, exact, black hole solutions to the Einstein field equations, which describe gravity in general relativity. Two of those rotate: the Kerr and Kerr–Newman black holes. It is generally believed that every black hole decays rapidly to a stable black hole; and, by the no-hair theorem, that (except for quantum fluctuations) stable black holes can be completely described at any moment in time by these 11 numbers: mass–energy M, linear momentum P (three components), angular momentum J (three components), position X (three components), electric charge Q. These numbers represent the conserved attributes of an object which can be determined from a distance by examining its electromagnetic and gravitational fields. All other variations in the black hole will either escape to infinity or be swallowed up by the black hole. This is because anything happening inside the black hole horizon cannot affect events outside of it. In terms of these properties, the four types of black holes can be defined as follows: Note that astrophysical black holes are expected to have non-zero angular momentum, due to their formation via collapse of rotating stellar objects, but effectively zero charge, since any net charge will quickly attract the opposite charge and neutralize. For this reason the term "astrophysical" black hole is usually reserved for the Kerr black hole. Rotating black holes are formed in the gravitational collapse of a massive spinning star or from the collapse or collision of a collection of compact objects, stars, or gas with a total non-zero angular momentum. As all known stars rotate and realistic collisions have non-zero angular momentum, it is expected that all black holes in nature are rotating black holes. Since observed astronomical objects do not possess an appreciable net electric charge, only the Kerr solution has astrophysical relevance.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood