Concept

Fermi's interaction

Summary
In particle physics, Fermi's interaction (also the Fermi theory of beta decay or the Fermi four-fermion interaction) is an explanation of the beta decay, proposed by Enrico Fermi in 1933. The theory posits four fermions directly interacting with one another (at one vertex of the associated Feynman diagram). This interaction explains beta decay of a neutron by direct coupling of a neutron with an electron, a neutrino (later determined to be an antineutrino) and a proton. Fermi first introduced this coupling in his description of beta decay in 1933. The Fermi interaction was the precursor to the theory for the weak interaction where the interaction between the proton–neutron and electron–antineutrino is mediated by a virtual W− boson, of which the Fermi theory is the low-energy effective field theory. Fermi first submitted his "tentative" theory of beta decay to the prestigious science journal Nature, which rejected it "because it contained speculations too remote from reality to be of interest to the reader." Nature later admitted the rejection to be one of the great editorial blunders in its history. Fermi then submitted revised versions of the paper to Italian and German publications, which accepted and published them in those languages in 1933 and 1934. The paper did not appear at the time in a primary publication in English. An English translation of the seminal paper was published in the American Journal of Physics in 1968. Fermi found the initial rejection of the paper so troubling that he decided to take some time off from theoretical physics, and do only experimental physics. This would lead shortly to his famous work with activation of nuclei with slow neutrons. The theory deals with three types of particles presumed to be in direct interaction: initially a “heavy particle” in the “neutron state” (), which then transitions into its “proton state” () with the emission of an electron and a neutrino. where is the single-electron wavefunction, are its stationary states.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.