Creation operators and annihilation operators are mathematical operators that have widespread applications in quantum mechanics, notably in the study of quantum harmonic oscillators and many-particle systems. An annihilation operator (usually denoted ) lowers the number of particles in a given state by one. A creation operator (usually denoted ) increases the number of particles in a given state by one, and it is the adjoint of the annihilation operator. In many subfields of physics and chemistry, the use of these operators instead of wavefunctions is known as second quantization. They were introduced by Paul Dirac.
Creation and annihilation operators can act on states of various types of particles. For example, in quantum chemistry and many-body theory the creation and annihilation operators often act on electron states. They can also refer specifically to the ladder operators for the quantum harmonic oscillator. In the latter case, the raising operator is interpreted as a creation operator, adding a quantum of energy to the oscillator system (similarly for the lowering operator). They can be used to represent phonons. Constructing Hamiltonians using these operators has the advantage that the theory automatically satisfies the cluster decomposition theorem.
The mathematics for the creation and annihilation operators for bosons is the same as for the ladder operators of the quantum harmonic oscillator. For example, the commutator of the creation and annihilation operators that are associated with the same boson state equals one, while all other commutators vanish. However, for fermions the mathematics is different, involving anticommutators instead of commutators.
Quantum harmonic oscillator#Ladder operator method
In the context of the quantum harmonic oscillator, one reinterprets the ladder operators as creation and annihilation operators, adding or subtracting fixed quanta of energy to the oscillator system.
Creation/annihilation operators are different for bosons (integer spin) and fermions (half-integer spin).
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The goal of the course is to introduce relativistic quantum field theory as the conceptual and mathematical framework describing fundamental interactions such as Quantum Electrodynamics.
This lecture describes advanced concepts and applications of quantum optics. It emphasizes the connection with ongoing research, and with the fast growing field of quantum technologies. The topics cov
The goal of the course is to introduce relativistic quantum field theory as the conceptual and mathematical framework describing fundamental interactions.
, , , , , , , ,
Fundamentals of optomechanics. Basic principles, recent developments and applications.
Spin is an intrinsic form of angular momentum carried by elementary particles, and thus by composite particles such as hadrons, atomic nuclei, and atoms. Spin should not be understood as in the "rotating internal mass" sense: spin is a quantized wave property. The existence of electron spin angular momentum is inferred from experiments, such as the Stern–Gerlach experiment, in which silver atoms were observed to possess two possible discrete angular momenta despite having no orbital angular momentum.
In quantum mechanics, a Fock state or number state is a quantum state that is an element of a Fock space with a well-defined number of particles (or quanta). These states are named after the Soviet physicist Vladimir Fock. Fock states play an important role in the second quantization formulation of quantum mechanics. The particle representation was first treated in detail by Paul Dirac for bosons and by Pascual Jordan and Eugene Wigner for fermions.
The Fock space is an algebraic construction used in quantum mechanics to construct the quantum states space of a variable or unknown number of identical particles from a single particle Hilbert space H. It is named after V. A. Fock who first introduced it in his 1932 paper "Konfigurationsraum und zweite Quantelung" ("Configuration space and second quantization"). Informally, a Fock space is the sum of a set of Hilbert spaces representing zero particle states, one particle states, two particle states, and so on.
Operators from various industries have been pushing the adoption of wireless sensing nodes for industrial monitoring, and such efforts have produced sizeable condition monitoring datasets that can be used to build diagnosis algorithms capable of warning ma ...
Political authorities, energy operators and other stakeholders have the responsibility to implement energy transition pathways by increasing decentralised renewable energy generation. As the main stakeholder, authorities often lack the appropriate tools to ...
We consider the Allen-Cahn equation ?(t)u - ?u = u - u(3) with a rapidly mixing Gaussian field as initial condition. We show that provided that the amplitude of the initial condition is not too large, the equation generates fronts described by nodal sets o ...