Related courses (21)
PHYS-432: Quantum field theory II
The goal of the course is to introduce relativistic quantum field theory as the conceptual and mathematical framework describing fundamental interactions such as Quantum Electrodynamics.
PHYS-454: Quantum optics and quantum information
This lecture describes advanced concepts and applications of quantum optics. It emphasizes the connection with ongoing research, and with the fast growing field of quantum technologies. The topics cov
PHYS-431: Quantum field theory I
The goal of the course is to introduce relativistic quantum field theory as the conceptual and mathematical framework describing fundamental interactions.
PHYS-331: Functional analysis (for PH)
Ce cours ambitionne de présenter les mathématiques de la mécanique quantique, et plus généralement de la physique quantique. Il s'adresse essentiellement aux physiciens, ou a des mathématiciens intére
PHYS-453: Quantum electrodynamics and quantum optics
This course develops the quantum theory of electromagnetic radiation from the principles of quantum electrodynamics. It will cover historic developments (coherent states, squeezed states, quantum theo
MICRO-410: Classical and quantum photonic transducers
This course gives an introduction to transducers by both considering fundamental principles and their application in classical and quantum systems. The course builds up on the fundamental concept of c
MICRO-444: La science quantique : une vision singulière
Les étudiants comprennent les caractéristiques de la science quantique. Ils en maitrisent le formalisme et l'appliquent dans les systèmes de base: puits, fils et boites quantiques, qubits.
PHYS-702: Advanced Quantum Field Theory
The course builds on the course QFT1 and QFT2 and develops in parallel to the course on Gauge Theories and the SM.
PHYS-313: Quantum physics I
The objective of this course is to familiarize the student with the concepts, methods and consequences of quantum physics.
PHYS-745: Spin Dynamics
The course is conceived in the perspective of understanding the fundamentals of spintronics. This implies learning about magnetism at the quantum mechanical level, mechanisms for spin relaxation and

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.