Toffoli gateIn logic circuits, the Toffoli gate (also CCNOT gate), invented by Tommaso Toffoli, is a universal reversible logic gate, which means that any classical reversible circuit can be constructed from Toffoli gates. It is also known as the "controlled-controlled-not" gate, which describes its action. It has 3-bit inputs and outputs; if the first two bits are both set to 1, it inverts the third bit, otherwise all bits stay the same. An input-consuming logic gate L is reversible if it meets the following conditions: L(x) = y is a gate where for any output y, there is a unique input x.
Quantum logic gateIn quantum computing and specifically the quantum circuit model of computation, a quantum logic gate (or simply quantum gate) is a basic quantum circuit operating on a small number of qubits. They are the building blocks of quantum circuits, like classical logic gates are for conventional digital circuits. Unlike many classical logic gates, quantum logic gates are reversible. It is possible to perform classical computing using only reversible gates.
Controlled NOT gateIn computer science, the controlled NOT gate (also C-NOT or CNOT), controlled-X gate, controlled-bit-flip gate, Feynman gate or controlled Pauli-X is a quantum logic gate that is an essential component in the construction of a gate-based quantum computer. It can be used to entangle and disentangle Bell states. Any quantum circuit can be simulated to an arbitrary degree of accuracy using a combination of CNOT gates and single qubit rotations. The gate is sometimes named after Richard Feynman who developed an early notation for quantum gate diagrams in 1986.
Quantum error correctionQuantum error correction (QEC) is used in quantum computing to protect quantum information from errors due to decoherence and other quantum noise. Quantum error correction is theorised as essential to achieve fault tolerant quantum computing that can reduce the effects of noise on stored quantum information, faulty quantum gates, faulty quantum preparation, and faulty measurements. This would allow algorithms of greater circuit depth. Classical error correction employs redundancy.
QubitIn quantum computing, a qubit (ˈkjuːbɪt) or quantum bit is a basic unit of quantum information—the quantum version of the classic binary bit physically realized with a two-state device. A qubit is a two-state (or two-level) quantum-mechanical system, one of the simplest quantum systems displaying the peculiarity of quantum mechanics. Examples include the spin of the electron in which the two levels can be taken as spin up and spin down; or the polarization of a single photon in which the two states can be taken to be the vertical polarization and the horizontal polarization.
Bell stateThe Bell's states or EPR pairs are specific quantum states of two qubits that represent the simplest examples of quantum entanglement; conceptually, they fall under the study of quantum information science. The Bell's states are a form of entangled and normalized basis vectors. This normalization implies that the overall probability of the particle being in one of the mentioned states is 1: . Entanglement is a basis-independent result of superposition.
Reversible computingReversible computing is any model of computation where the computational process, to some extent, is time-reversible. In a model of computation that uses deterministic transitions from one state of the abstract machine to another, a necessary condition for reversibility is that the relation of the mapping from states to their successors must be one-to-one. Reversible computing is a form of unconventional computing. Due to the unitarity of quantum mechanics, quantum circuits are reversible, as long as they do not "collapse" the quantum states they operate on.
Ancilla bitIn reversible computing, ancilla bits are extra bits being used to implement irreversible logical operations. In classical computation, any memory bit can be turned on or off at will, requiring no prior knowledge or extra complexity. However, this is not the case in quantum computing or classical reversible computing. In these models of computing, all operations on computer memory must be reversible, and toggling a bit on or off would lose the information about the initial value of that bit.
Quantum teleportationQuantum teleportation is a technique for transferring quantum information from a sender at one location to a receiver some distance away. While teleportation is commonly portrayed in science fiction as a means to transfer physical objects from one location to the next, quantum teleportation only transfers quantum information. The sender does not have to know the particular quantum state being transferred. Moreover, the location of the recipient can be unknown, but to complete the quantum teleportation, classical information needs to be sent from sender to receiver.
Quantum computingA quantum computer is a computer that exploits quantum mechanical phenomena. At small scales, physical matter exhibits properties of both particles and waves, and quantum computing leverages this behavior, specifically quantum superposition and entanglement, using specialized hardware that supports the preparation and manipulation of quantum states. Classical physics cannot explain the operation of these quantum devices, and a scalable quantum computer could perform some calculations exponentially faster than any modern "classical" computer.