Reversible computing is any model of computation where the computational process, to some extent, is time-reversible. In a model of computation that uses deterministic transitions from one state of the abstract machine to another, a necessary condition for reversibility is that the relation of the mapping from states to their successors must be one-to-one. Reversible computing is a form of unconventional computing.
Due to the unitarity of quantum mechanics, quantum circuits are reversible, as long as they do not "collapse" the quantum states they operate on.
There are two major, closely related types of reversibility that are of particular interest for this purpose: physical reversibility and logical reversibility.
A process is said to be physically reversible if it results in no increase in physical entropy; it is isentropic. There is a style of circuit design ideally exhibiting this property that is referred to as charge recovery logic, adiabatic circuits, or adiabatic computing (see Adiabatic process). Although in practice no nonstationary physical process can be exactly physically reversible or isentropic, there is no known limit to the closeness with which we can approach perfect reversibility, in systems that are sufficiently well isolated from interactions with unknown external environments, when the laws of physics describing the system's evolution are precisely known.
A motivation for the study of technologies aimed at implementing reversible computing is that they offer what is predicted to be the only potential way to improve the computational energy efficiency (i.e., useful operations performed per unit energy dissipated) of computers beyond the fundamental von Neumann–Landauer limit of kT ln(2) energy dissipated per irreversible bit operation. Although the Landauer limit was millions of times below the energy consumption of computers in the 2000s and thousands of times less in the 2010s, proponents of reversible computing argue that this can be attributed largely to architectural overheads which effectively magnify the impact of Landauer's limit in practical circuit designs, so that it may prove difficult for practical technology to progress very far beyond current levels of energy efficiency if reversible computing principles are not used.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Information is processed in physical devices. In the quantum regime the concept of classical bit is replaced by the quantum bit. We introduce quantum principles, and then quantum communications, key d
Ce cours présente la thermodynamique en tant que théorie permettant une description d'un grand nombre de phénomènes importants en physique, chimie et ingéniere, et d'effets de transport. Une introduc
After introducing the foundations of classical and quantum information theory, and quantum measurement, the course will address the theory and practice of digital quantum computing, covering fundament
In computer science, the controlled NOT gate (also C-NOT or CNOT), controlled-X gate, controlled-bit-flip gate, Feynman gate or controlled Pauli-X is a quantum logic gate that is an essential component in the construction of a gate-based quantum computer. It can be used to entangle and disentangle Bell states. Any quantum circuit can be simulated to an arbitrary degree of accuracy using a combination of CNOT gates and single qubit rotations. The gate is sometimes named after Richard Feynman who developed an early notation for quantum gate diagrams in 1986.
In logic circuits, the Toffoli gate (also CCNOT gate), invented by Tommaso Toffoli, is a universal reversible logic gate, which means that any classical reversible circuit can be constructed from Toffoli gates. It is also known as the "controlled-controlled-not" gate, which describes its action. It has 3-bit inputs and outputs; if the first two bits are both set to 1, it inverts the third bit, otherwise all bits stay the same. An input-consuming logic gate L is reversible if it meets the following conditions: L(x) = y is a gate where for any output y, there is a unique input x.
In logic, a functionally complete set of logical connectives or Boolean operators is one which can be used to express all possible truth tables by combining members of the set into a Boolean expression. A well-known complete set of connectives is { AND, NOT }. Each of the singleton sets { NAND } and { NOR } is functionally complete. However, the set { AND, OR } is incomplete, due to its inability to express NOT. A gate or set of gates which is functionally complete can also be called a universal gate / gates.
Strain is inevitable in two-dimensional (2D) materials, regardless of whether the film is suspended or supported. However, the direct measurement of strain response at the atomic scale is challenging due to the difficulties of maintaining both flexibility ...
2D van der Waals heterojunctions (vdWH) have emerged as an attractive platform for the realization of optoelectronic synaptic devices, which are critical for energy-efficient computing systems. Photogating induced by charge traps at the interfaces indeed r ...
Molecular quantum dynamics simulations are essential for understanding many fundamental phenomena in physics and chemistry. They often require solving the time-dependent Schrödinger equation for molecular nuclei, which is challenging even for medium-sized ...