Power system operations is a term used in electricity generation to describe the process of decision-making on the timescale from one day (day-ahead operation) to minutes prior to the power delivery. The term power system control describes actions taken in response to unplanned disturbances (e.g., changes in demand or equipment failures) in order to provide reliable electric supply of acceptable quality. The corresponding engineering branch is called Power System Operations and Control. Electricity is hard to store, so at any moment the supply (generation) shall be balanced with demand ("grid balancing"). In an electrical grid the task of real-time balancing is performed by a regional-based control center, run by an electric utility in the traditional (vertically integrated) electricity market. In the restructured North American power transmission grid, these centers belong to balancing authorities numbered 74 in 2016, the entities responsible for operations are also called independent system operators, transmission system operators. The other form of balancing resources of multiple power plants is a power pool. The balancing authorities are overseen by reliability coordinators.
Unit commitment problem in electrical power production
Day-ahead operation schedules the generation units that can be called upon to provide the electricity on the next day (unit commitment). The dispatchable generation units can produce electricity on demand and thus can be scheduled with accuracy. The production of the weather-dependent variable renewable energy for the next day is not certain, its sources are thus non-dispatchable. This variability, coupled with uncertain future power demand and the need to accommodate possible generation and transmission failures requires scheduling of operating reserves that are not expected to produce electricity, but can be dispatched on a very short notice.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course presents different types and mechanisms of electricity markets. It addresses in particular their impacts on power/distribution systems operation and consequently the appropriate strategies
Ce cours décrit les composants d'un réseau électrique. Il explique le fonctionnement des réseaux électriques et leurs limites d'utilisation. Il introduit les outils de base permettant de les piloter.
Electricity transmission congestion is a condition of the electrical grid that prevents the accepted or forecasted load schedules from being implemented due to the grid configuration and equipment performance limitations. In simple terms, congestion occurs when overloaded transmission lines are unable to carry additional electricity flow due to the risk of overheating and the transmission system operator (TSO) has to direct the providers to adjust their dispatch levels to accommodate the constraint or in an electricity market a power plant can produce electricity at a competitive price but cannot transmit the power to a willing buyer.
The merit order is a way of ranking available sources of energy, especially electrical generation, based on ascending order of price (which may reflect the order of their short-run marginal costs of production) and sometimes pollution, together with amount of energy that will be generated. In a centralized management, the ranking is so that those with the lowest marginal costs are the first ones to be brought online to meet demand, and the plants with the highest marginal costs are the last to be brought on line.
In a broad sense, an electricity market is a system that facilitates the exchange of electricity-related goods and services. During more than a century of evolution of the electric power industry, the economics of the electricity markets had undergone enormous changes for reasons ranging from the technological advances on supply and demand sides to politics and ideology.
The European Union's Green Deal aims for a 55% reduction in greenhouse gas emissions by 2030. To reach this goal, a massive integration of Renewable Energy Sources (RES) into the power grid is necessary. As RES become a large part of the electricity genera ...
The current global energy landscape is characterized by an increasing demand for affordable and sustainable energy sources, leading to an ever increasing integration of intermittent renewable energy resources into the grid. The intermittent nature of these ...
The thesis develops a planning framework for ADNs to achieve their dispatchability by means of ESS allocation while ensuring a reliable and secure operation of ADNs. Second, the framework is extended to include grid reinforcements and ESSs planning. Finall ...