Avogadro constantThe Avogadro constant, commonly denoted N_A or L, is an SI defining constant with an exact value of 6.02214076e23reciprocal moles. It is used as a normalization factor in the amount of substance in a sample (in units of moles), defined as the number of constituent particles (usually molecules, atoms, or ions) divided by N_A. In practice, its value is often approximated as 6.02×1023 or 6.022×1023 particles per mole. The constant is named after the physicist Amedeo Avogadro (1776–1856).
Equation of stateIn physics and chemistry, an equation of state is a thermodynamic equation relating state variables, which describe the state of matter under a given set of physical conditions, such as pressure, volume, temperature, or internal energy. Most modern equations of state are formulated in the Helmholtz free energy. Equations of state are useful in describing the properties of pure substances and mixtures in liquids, gases, and solid states as well as the state of matter in the interior of stars.
Dalton (unit)The dalton or unified atomic mass unit (symbols: Da or u) is a non-SI unit of mass defined as 1/12 of the mass of an unbound neutral atom of carbon-12 in its nuclear and electronic ground state and at rest. The atomic mass constant, denoted mu, is defined identically, giving mu = 1/12 m(^12C) = 1 Da. This unit is commonly used in physics and chemistry to express the mass of atomic-scale objects, such as atoms, molecules, and elementary particles, both for discrete instances and multiple types of ensemble averages.
Ideal gasAn ideal gas is a theoretical gas composed of many randomly moving point particles that are not subject to interparticle interactions. The ideal gas concept is useful because it obeys the ideal gas law, a simplified equation of state, and is amenable to analysis under statistical mechanics. The requirement of zero interaction can often be relaxed if, for example, the interaction is perfectly elastic or regarded as point-like collisions.
DensityDensity (volumetric mass density or specific mass) is the substance's mass per unit of volume. The symbol most often used for density is ρ (the lower case Greek letter rho), although the Latin letter D can also be used. Mathematically, density is defined as mass divided by volume: where ρ is the density, m is the mass, and V is the volume. In some cases (for instance, in the United States oil and gas industry), density is loosely defined as its weight per unit volume, although this is scientifically inaccurate – this quantity is more specifically called specific weight.
Gas constantThe molar gas constant (also known as the gas constant, universal gas constant, or ideal gas constant) is denoted by the symbol R or . It is the molar equivalent to the Boltzmann constant, expressed in units of energy per temperature increment per amount of substance, i.e. the pressure–volume product, rather than energy per temperature increment per particle. The constant is also a combination of the constants from Boyle's law, Charles's law, Avogadro's law, and Gay-Lussac's law.