Polar auxin transport is the regulated transport of the plant hormone auxin in plants. It is an active process, the hormone is transported in cell-to-cell manner and one of the main features of the transport is its asymmetry and directionality (polarity). The polar auxin transport functions to coordinate plant development; the following spatial auxin distribution underpins most of plant growth responses to its environment and plant growth and developmental changes in general. In other words, the flow and relative concentrations of auxin informs each plant cell where it is located and therefore what it should do or become. Polar auxin transport (PAT) is directional and active flow of auxin molecules through the plant tissues. The flow of auxin molecules through the neighboring cells is driven by carriers (type of membrane transport protein) in the cell-to-cell fashion (from one cell to other cell and then to the next one) and the direction of the flow is determined by the localization of the carriers on the plasma membrane in the concerned cells. The transport from cell to the neighboring one is achieved through relatively complex combination of several sub-processes. To explain the mechanism behind unique character of auxin transport through living cell files of the plant, the so-called chemiosmotic model was formulated. The mechanism was first proposed in the 1970s by Ruberry and Sheldrake and this visionary prediction was finally proven in the 21st century. The mechanism below describes the process in which auxin is trapped in the cell by the so-called acid trap and how it can then leave the cell only by activity of specific carriers, which control the directionality of the flow from cells and generally the direction of auxin transport through the whole plant body. ion trapping As weak acids, the protonation state of auxins is dictated by the pH of the environment; a strongly acidic environment inhibits the forward reaction (dissociation), whereas an alkaline environment strongly favors it (see Henderson-Hasselbalch equation): The export of auxins from cells is termed auxin efflux and the entry of auxin in to cells is called auxin influx.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications (2)

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.