The joule per mole (symbol: J·mol−1 or J/mol) is the unit of energy per amount of substance in the International System of Units (SI), such that energy is measured in joules, and the amount of substance is measured in moles.
It is also an SI derived unit of molar thermodynamic energy defined as the energy equal to one joule in one mole of substance. For example, the Gibbs free energy of a compound in the area of thermochemistry is often quantified in units of kilojoules per mole (symbol: kJ·mol−1 or kJ/mol), with 1 kilojoule = 1000 joules.
Physical quantities measured in J·mol−1 usually describe quantities of energy transferred during phase transformations or chemical reactions. Division by the number of moles facilitates comparison between processes involving different quantities of material and between similar processes involving different types of materials. The precise meaning of such a quantity is dependent on the context (what substances are involved, circumstances, etc.), but the unit of measurement is used specifically to describe certain existing phenomena, such as in thermodynamics it is the unit of measurement that describes molar energy.
Since 1 mole = 6.02214076 particles (atoms, molecules, ions etc.), 1 joule per mole is equal to 1 joule divided by 6.02214076 particles, ≈1.660539 joule per particle. This very small amount of energy is often expressed in terms of an even smaller unit such as the kJ·mol−1, because of the typical order of magnitude for energy changes in chemical processes. For example, heats of fusion and vaporization are usually of the order of 10 kJ·mol−1, bond energies are of the order of 100 kJ·mol−1, and ionization energies of the order of 1000 kJ·mol−1. For this reason, it is common within the field of chemistry to quantify the enthalpy of reaction in units of kJ·mol−1.
Other units sometimes used to describe reaction energetics are kilocalories per mole (kcal·mol−1), electron volts per particle (eV), and wavenumbers in inverse centimeters (cm−1). 1 kJ·mol−1 is approximately equal to 1.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In chemistry, bond energy (BE), also called the mean bond enthalpy or average bond enthalpy is a measure of bond strength in a chemical bond. IUPAC defines bond energy as the average value of the gas-phase bond-dissociation energy (usually at a temperature of 298.15 K) for all bonds of the same type within the same chemical species. The bond dissociation energy (enthalpy) is also referred to as bond disruption energy, bond energy, bond strength, or binding energy (abbreviation: BDE, BE, or D).
In thermodynamics, the Gibbs free energy (or Gibbs energy as the recommended name; symbol ) is a thermodynamic potential that can be used to calculate the maximum amount of work, other than pressure-volume work, that may be performed by a thermodynamically closed system at constant temperature and pressure. It also provides a necessary condition for processes such as chemical reactions that may occur under these conditions. The Gibbs free energy is expressed as where p is pressure, T is the temperature, U is the internal energy, V is volume, H is the enthalpy, and S is the entropy.
The bond-dissociation energy (BDE, D0, or DH°) is one measure of the strength of a chemical bond . It can be defined as the standard enthalpy change when is cleaved by homolysis to give fragments A and B, which are usually radical species. The enthalpy change is temperature-dependent, and the bond-dissociation energy is often defined to be the enthalpy change of the homolysis at 0 K (absolute zero), although the enthalpy change at 298 K (standard conditions) is also a frequently encountered parameter.
This course introduces modern computational electronic structure methods and their broad applications to organic chemistry. It also discusses physical organic concepts to illustrate the stability and
Introduction to Chemical Engineering is an introductory course that provides a basic overview of the chemical engineering field. It addresses the formulation and solution of material and energy balanc
Ce cours permet l'acquisition des notions essentielles relatives à la structure de la matière, aux équilibres et à la réactivité chimique en liaison avec les propriétés mécaniques, thermiques, électri
To be able to simulate activated heterogeneously catalyzed reactions on the edge and corner sites of nanoparticles, a method for calculating accurate activation barriers for the reactions is required. We have recently demonstrated that a semiempirical spec ...
2019
, ,
Stepped transition metal surfaces, including the reconstructed Pt(110)-(2 × 1) surface, can be used to model the effect of line defects on cata- lysts. We present a combined experimental and theoretical study of CHD3 dissociation on this surface. Theoretic ...
The dynamical properties of water molecules confinedin the unidirectionalhydrophilic nanopores of AlPO4-54 are investigated withquasi-elastic neutron scattering as a function of temperature downto 118 K. AlPO4-54 has among the largest pores known foralumin ...