In mathematics, particularly geometric graph theory, a unit distance graph is a graph formed from a collection of points in the Euclidean plane by connecting two points whenever the distance between them is exactly one. To distinguish these graphs from a broader definition that allows some non-adjacent pairs of vertices to be at distance one, they may also be called strict unit distance graphs or faithful unit distance graphs. As a hereditary family of graphs, they can be characterized by forbidden induced subgraphs. The unit distance graphs include the cactus graphs, the matchstick graphs and penny graphs, and the hypercube graphs. The generalized Petersen graphs are non-strict unit distance graphs.
An unsolved problem of Paul Erdős asks how many edges a unit distance graph on vertices can have. The best known lower bound is slightly above linear in —far from the upper bound, proportional to . The number of colors required to color unit distance graphs is also unknown (the Hadwiger–Nelson problem): some unit distance graphs require five colors, and every unit distance graph can be colored with seven colors. For every algebraic number there is a unit distance graph with two vertices that must be that distance apart. According to the Beckman–Quarles theorem, the only plane transformations that preserve all unit distance graphs are the isometries.
It is possible to construct a unit distance graph efficiently, given its points. Finding all unit distances has applications in pattern matching, where it can be a first step in finding congruent copies of larger patterns. However, determining whether a given graph can be represented as a unit distance graph is NP-hard, and more specifically complete for the existential theory of the reals.
The unit distance graph for a set of points in the plane is the undirected graph having those points as its vertices, with an edge between two vertices whenever their Euclidean distance is exactly one.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In graph theory, a lattice graph, mesh graph, or grid graph is a graph whose drawing, embedded in some Euclidean space \mathbb{R}^n, forms a regular tiling. This implies that the group of bijective transformations that send the graph to itself is a lattice in the group-theoretical sense. Typically, no clear distinction is made between such a graph in the more abstract sense of graph theory, and its drawing in space (often the plane or 3D space). This type of graph may more shortly be called just a lattice, mesh, or grid.
In geometric graph theory, a unit disk graph is the intersection graph of a family of unit disks in the Euclidean plane. That is, it is a graph with one vertex for each disk in the family, and with an edge between two vertices whenever the corresponding vertices lie within a unit distance of each other. They are commonly formed from a Poisson point process, making them a simple example of a random structure.
In graph theory, the Cartesian product G □ H of graphs G and H is a graph such that: the vertex set of G □ H is the Cartesian product V(G) × V(H); and two vertices (u,u' ) and (v,v' ) are adjacent in G □ H if and only if either u = v and u' is adjacent to v' in H, or u' = v' and u is adjacent to v in G. The Cartesian product of graphs is sometimes called the box product of graphs [Harary 1969]. The operation is associative, as the graphs (F □ G) □ H and F □ (G □ H) are naturally isomorphic.
In data-parallel optimization of machine learning models, workers collaborate to improve their estimates of the model: more accurate gradients allow them to use larger learning rates and optimize faster. In the decentralized setting, in which workers commu ...
As modern machine learning continues to achieve unprecedented benchmarks, the resource demands to train these advanced models grow drastically. This has led to a paradigm shift towards distributed training. However, the presence of adversariesâwhether ma ...
The metric dimension (MD) of a graph is a combinatorial notion capturing the minimum number of landmark nodes needed to distinguish every pair of nodes in the graph based on graph distance. We study how much the MD can increase if we add a single edge to t ...