Technical geography is the branch of geography that involves using, studying, and creating tools to obtain, analyze, interpret, understand, and communicate spatial information. The other branches, most commonly limited to human geography and physical geography, can usually apply the concepts and techniques of technical geography. However, the methods and theory are distinct, and a technical geographer may be more concerned with the technological and theoretical concepts than the nature of the data. Thus, the spatial data types a technical geographer employs may vary widely, including human and physical geography topics, with the common thread being the techniques and philosophies employed. To accomplish this, technical geographers often create their own software or scripts, which can then be applied more broadly by others. While technical geography mostly works with quantitative data, the techniques and technology can be applied to qualitative geography, differentiating it from quantitative geography. Within the branch of technical geography are the major and overlapping subbranches of geographic information science, geomatics, and geoinformatics.
The term "technical geography" is a combination of the words "technical," from the Greek τεχνικός (technikós meaning art or craft), meaning relating to a particular subject or activity and involving practical skills, and "geography," from Greek γεωγραφία (geographia, a combination of Greek words ‘Geo’ (The Earth) and ‘Graphien’ to describe. Literally "earth description"), a field of science devoted to the study of the lands, features, inhabitants, and phenomena of Earth. The origin of technical geography as a term can be traced at least as far back as 1749 in the publication "Geography reformed: a new system of general geography, according to an accurate analysis of the science in four parts." Technical geography as a term is more than place name recollection and toponymy; it involves spatial relationships between points and theory.