Meltwater (or melt water) is water released by the melting of snow or ice, including glacial ice, tabular icebergs and ice shelves over oceans. Meltwater is often found during early spring when snow packs and frozen rivers melt with rising temperatures, and in the ablation zone of glaciers where the rate of snow cover is reducing. Meltwater can be produced during volcanic eruptions, in a similar way in which the more dangerous lahars form.
When meltwater pools on the surface rather than flowing, it forms melt ponds. As the weather gets colder meltwater will often re-freeze. Meltwater can also collect or melt under the ice's surface. These pools of water, known as subglacial lakes can form due to geothermal heat and friction. Melt ponds may also form above and below Arctic sea ice, decreasing its albedo and causing the formation of thin underwater ice layers or false bottoms.
Water resources
Meltwater provides drinking water for a large proportion of the world's population, as well as providing water for irrigation and hydroelectric plants. This meltwater can originate from seasonal snowfall, or from the melting of more permanent glaciers. Climate change threatens the precipitation of snow and the shrinking volume of glaciers.
Some cities around the world have large lakes that collect snow melt to supplement water supply. Others have artificial reservoirs that collect water from rivers, which receive large influxes of meltwater from their higher elevation tributaries. Snow melt hundreds of miles away can contribute to river replenishment. Snowfall can also replenish groundwater in a highly variable process. Cities that indirectly source water from meltwater include Melbourne, Canberra, Los Angeles, Las Vegas among others.
In North America, 78% of meltwater flows west of the Continental Divide, and 22% flows east of the Continental Divide. Agriculture in Wyoming and Alberta relies on water sources made more stable during the growing season by glacial meltwater.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course covers principles of snow physics, snow hydrology, snow-atmosphere interaction and snow modeling. It transmits sound understanding of physical processes within the snow and at its interfac
Fresh water or freshwater is any naturally occurring liquid or frozen water containing low concentrations of dissolved salts and other total dissolved solids. Although the term specifically excludes seawater and brackish water, it does include non-salty mineral-rich waters such as chalybeate springs. Fresh water may encompass frozen and meltwater in ice sheets, ice caps, glaciers, snowfields and icebergs, natural precipitations such as rainfall, snowfall, hail/sleet and graupel, and surface runoffs that form inland bodies of water such as wetlands, ponds, lakes, rivers, streams, as well as groundwater contained in aquifers, subterranean rivers and lakes.
In hydrology, snowmelt is surface runoff produced from melting snow. It can also be used to describe the period or season during which such runoff is produced. Water produced by snowmelt is an important part of the annual water cycle in many parts of the world, in some cases contributing high fractions of the annual runoff in a watershed. Predicting snowmelt runoff from a drainage basin may be a part of designing water control projects. Rapid snowmelt can cause flooding.
A stream is a continuous body of surface water flowing within the bed and banks of a channel. Depending on its location or certain characteristics, a stream may be referred to by a variety of local or regional names. Long, large streams are usually called rivers, while smaller, less voluminous and more intermittent streams are known as streamlets, brooks or creeks. The flow of a stream is controlled by three inputs – surface runoff (from precipitation or meltwater), daylighted subterranean water, and surfaced groundwater (spring water).
Explores the energy balance in snowpacks, focusing on radiation properties, energy transfer mechanisms, and factors affecting terrestrial energy exchange.
Glacial forelands figure among the most dynamic landscapes on Earth, and their formation is currently accelerating given glacier shrinkage. Draining these forelands are streams hosting unique microbial communities, which have the capacity to impact both th ...
EPFL2023
, ,
In high elevation Alpine areas, characterised by high snow accumulation and radiation-driven melt processes, the formation of peculiar ablation features called sun cups can be observed. Sun cups likely influence the energy and mass balance of the wet snowp ...
2024
Time series analyses of solute concentrations in streamwater and precipitation are powerful tools for unraveling the interplay of hydrological and biogeochemical processes at the catchment scale. While such datasets are available for many sites around the ...