Exponential objectIn mathematics, specifically in , an exponential object or map object is the generalization of a function space in set theory. with all and exponential objects are called . Categories (such as of ) without adjoined products may still have an exponential law. Let be a category, let and be of , and let have all with .
Compactly generated spaceIn topology, a topological space is called a compactly generated space or k-space if its topology is determined by compact spaces in a manner made precise below. There is in fact no commonly agreed upon definition for such spaces, as different authors use variations of the definition that are not exactly equivalent to each other. Also some authors include some separation axiom (like Hausdorff space or weak Hausdorff space) in the definition of one or both terms, and others don't.
Initial topologyIn general topology and related areas of mathematics, the initial topology (or induced topology or weak topology or limit topology or projective topology) on a set with respect to a family of functions on is the coarsest topology on that makes those functions continuous. The subspace topology and product topology constructions are both special cases of initial topologies. Indeed, the initial topology construction can be viewed as a generalization of these.
Duality (mathematics)In mathematics, a duality translates concepts, theorems or mathematical structures into other concepts, theorems or structures, in a one-to-one fashion, often (but not always) by means of an involution operation: if the dual of A is B, then the dual of B is A. Such involutions sometimes have fixed points, so that the dual of A is A itself. For example, Desargues' theorem is self-dual in this sense under the standard duality in projective geometry. In mathematical contexts, duality has numerous meanings.
HomotopyIn topology, a branch of mathematics, two continuous functions from one topological space to another are called homotopic (from ὁμός "same, similar" and τόπος "place") if one can be "continuously deformed" into the other, such a deformation being called a homotopy (həˈmɒtəpiː, ; ˈhoʊmoʊˌtoʊpiː, ) between the two functions. A notable use of homotopy is the definition of homotopy groups and cohomotopy groups, important invariants in algebraic topology. In practice, there are technical difficulties in using homotopies with certain spaces.
Cartesian closed categoryIn , a is Cartesian closed if, roughly speaking, any morphism defined on a of two can be naturally identified with a morphism defined on one of the factors. These categories are particularly important in mathematical logic and the theory of programming, in that their internal language is the simply typed lambda calculus. They are generalized by , whose internal language, linear type systems, are suitable for both quantum and classical computation.
CW complexA CW complex (also called cellular complex or cell complex) is a kind of a topological space that is particularly important in algebraic topology. It was introduced by J. H. C. Whitehead to meet the needs of homotopy theory. This class of spaces is broader and has some better properties than simplicial complexes, but still retains a combinatorial nature that allows for computation (often with a much smaller complex). The C stands for "closure-finite", and the W for "weak" topology.
Fundamental groupIn the mathematical field of algebraic topology, the fundamental group of a topological space is the group of the equivalence classes under homotopy of the loops contained in the space. It records information about the basic shape, or holes, of the topological space. The fundamental group is the first and simplest homotopy group. The fundamental group is a homotopy invariant—topological spaces that are homotopy equivalent (or the stronger case of homeomorphic) have isomorphic fundamental groups.