**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Concept# Homotopy

Summary

In topology, a branch of mathematics, two continuous functions from one topological space to another are called homotopic (from ὁμός "same, similar" and τόπος "place") if one can be "continuously deformed" into the other, such a deformation being called a homotopy (həˈmɒtəpiː, ; ˈhoʊmoʊˌtoʊpiː, ) between the two functions. A notable use of homotopy is the definition of homotopy groups and cohomotopy groups, important invariants in algebraic topology.
In practice, there are technical difficulties in using homotopies with certain spaces. Algebraic topologists work with compactly generated spaces, CW complexes, or spectra.
Formal definition
Formally, a homotopy between two continuous functions f and g from a
topological space X to a topological space Y is defined to be a continuous function H: X \times [0,1] \to Y from the product of the space X with the unit interval [0, 1] to Y such that H(x,0) = f(x) and H(x,1) = g(x) for

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications

Loading

Related people

Loading

Related units

Loading

Related concepts

Loading

Related courses

Loading

Related lectures

Loading

Related people (3)

Related publications (28)

Loading

Loading

Loading

Related units (2)

Related concepts (71)

Topology

In mathematics, topology (from the Greek words τόπος, and λόγος) is concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting

Algebraic topology

Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariants that classify topological spaces up to

Manifold

In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or n-manifold for sho

Related courses (11)

MATH-436: Homotopical algebra

This course will provide an introduction to model category theory, which is an abstract framework for generalizing homotopy theory beyond topological spaces and continuous maps. We will study numerous examples of model categories and their applications in algebra and topology.

MATH-323: Algebraic topology

Homology is one of the most important tools to study topological spaces and it plays an important role in many fields of mathematics. The aim of this course is to introduce this notion, understand its properties and learn how to compute it. There will be many examples and applications.

MATH-211: Group Theory

Après une introduction à la théorie des catégories, nous appliquerons la théorie générale au cas particulier des groupes, ce qui nous permettra de bien mettre en perspective des notions telles que quotients de groupe et actions de groupe.

There is a classical "duality" between homotopy and homology groups in that homotopy groups are compatible with homotopy pullbacks (every homotopy pullback gives rise to a long exact sequence in homotopy), while homology groups are compatible with homotopy pushouts (every homotopy pushout gives rise to a long exact sequence in homology). This last statement is sometimes referred to as the Mayer-Vietoris or excision axiom. The classical Blakers-Massey theorem (or homotopy excision theorem) asks to what extent the excision property for homotopy pushouts remains true if we replace homology groups by homotopy groups and gives a range in which the excision property holds. It does so by estimating the connectivity of a certain comparison map, which is a rather crude measure, as it is just a single number. Since connectivity is a special case of a cellular inequality, the hope is that there is a stronger statement hidden behind the connectivity result in terms of such inequalities. This process of generalising the homotopy excision theorem has been initiated by Chachólski in the 90s, where he proved a more general version for homotopy pushout squares. The caveat was that one had to suspend the comparison map in question first and the goal of our project -- which we obtained -- was to lose this suspension and then move on to cubical diagrams, rather than squares. To do so, there are a few basic ingredients that are necessary. We first talk about our abstract approach to derived functors, then construct left Bousfield localisations of combinatorial model categories and finally, generalise the foundational concepts in the theory of closed classes to non-connected spaces.

The goal of this work is to study Alexander-Whitney coalgebras (first defined in [HPST06]) from a topological point of view. An Alexander-Whitney coalgebra is a coassociative chain coalgebra over Z with an extra algebraic structure : the comultiplication must respect the coalgebra structure up to an infinite sequence of homotopies (this sequence is part of the data of the Alexander-Whitney coalgebra structure). Alexander-Whitney coalgebras are interesting for topologists because the normalized chain complex C(K) of a simplicial set K is endowed with an Alexander-Whitney coalgebra structure. This theorem is proved for the first time here (generalising a result proven in [HPST06]). This theorem gives the hope that the Alexander-Whitney coalgebra structure of C(K) contains interesting information that can be used to solve topological problems. This hope is strengthened by the success already obtained in the work of several topologists. Among others, [HPST06], [HL07], [Boy08], and [HR] use the Alexander-Whitney coalgebra structure of the normalized chains of a simplicial set in an essential way to solve topological problems. This thesis begins with some background material. In particular, the definition of a DCSH morphism between two coassociative chain coalgebras is recalled in complete detail. For example, signs are determined with great precision. Next we devote a chapter to the definition of Alexander-Whitney coalgebras and to their importance in topology. In the following chapter we begin the conceptual study of Alexander-Whitney coalgebras. A global study of these objects had not yet been carried out even if the Alexander-Whitney coalgebra structure has been studied and used in order to answer some specific questions. With the aim of studying Alexander-Whitney coalgebras in a nice setting, we develop an operadic description of these coalgebras in the following chapter. More precisely, we show that there is an explicit operad AW such that the coalgebras over this operad are exactly the Alexander-Whitney coalgebras. Furthermore, AW is shown to be a Hopf operad, so that the category formed by the Alexander-Whitney coalgebras is actually a monoidal category. These results are proven in a reasonably general framework. In fact, we associate an operad to each bimodule (over the associative operad) of a certain type, such that we get AW if this bimodule is well chosen. In particular, these results enable us to study Alexander-Whitney coalgebras from the standpoint of operads. This strategy is recognised to be successful in various mathematical situations, and especially in algebraic topology. Moreover, we develop a minimal model notion in the setting of right module over a chosen operad (which has to satisfy some reasonable conditions), with the aim of applying this result to the special case of the Alexander-Whitney coalgebras. This is possible because coalgebras over some fixed operad P can be seen as right modules over P. And the category of right modules over P has some nice features which do not appear to hold in the category of P-coalgebras. The inspiration for this part of our work comes from the notion of minimal model developed in the framework of rational homotopy theory. The two following facts show that it is reasonable to try to adapt some ideas of rational homotopy theory to the category of Alexander-Whitney coalgebras. A. There is a theorem that says that studying topological spaces up to rational equivalences is, essentially, equivalent to studying cocommutative chain coalgebras over the field of rational numbers. This is false if the ring of integers replaces the field of rational numbers, but Alexander-Whitney coalgebras are "almost" cocommutative in the sense which is explained in this thesis. B. It could be that the Alexander-Whitney coalgebra structure of the normalized chains of a simplicial set is weak enough to allow explicit computations. At least, it is clear that the Alexander-Whitney coalgebra structure on the normalized chains is far from being an E∞-structure (such a structure determines the homotopy type of the considered simplicial set, at least under some conditions). The chapter about minimal models in the framework of right modules over an operad includes an existence theorem and a discussion of the unicity of this model. In the second part of this chapter, we construct an explicit path-object in the model category of right modules over an operad. This path-object is then used to investigate the topologically relevant information that could stem from the minimal model in the case of the operad AW. Finally, we present and examine some interesting open questions about Alexander-Whitney coalgebras. These questions give a nice outlook on future research in this area.

The theory of persistence, which arises from topological data analysis, has been intensively studied in the one-parameter case both theoretically and in its applications. However, its extension to the multi-parameter case raises numerous difficulties, where it has been proven that no barcode-like decomposition exists. To tackle this problem, algebraic invariants have been proposed to summarize multi-parameter persistence modules, adapting classical ideas from commutative algebra and algebraic geometry to this context. Nevertheless, the crucial question of their stability has raised little attention so far, and many of the proposed invariants do not satisfy a naive form of stability. In this paper, we equip the homotopy and the derived category of multi-parameter persistence modules with an appropriate interleaving distance. We prove that resolution functors are always isometric with respect to this distance. As an application, this explains why the graded-Betti numbers of a persistence module do not satisfy a naive form of stability. This opens the door to performing homological algebra operations while keeping track of stability. We believe this approach can lead to the definition of new stable invariants for multi-parameter persistence, and to new computable lower bounds for the interleaving distance (which has been recently shown to be NP-hard to compute in [2]).

Related lectures (53)